Simultaneous Quantifier Elimination

Serge Autexier!, Heiko Mantel?, and Werner Stephan?

! Universitit des Saarlandes, FB Informatik
Postfach 15 11 50, 66041 Saarbriicken, Germany
autexierQags.uni-sb.de
2 German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
{mantel, stephan}@dfki.de

Abstract. We present a sequent calculus which allows the simultane-
ous elimination of multiple quantifiers. The approach is an improvement
over the well-known skolemization in sequent calculus. It allows a lazy
handling of instantiations and of the order of certain reductions. Simul-
taneous quantifier elimination is justified from a semantical as well as
from a proof theoretical point of view.

1 Introduction

Sequent calculi are a very common search space representation. Originally de-
veloped by Gentzen [6] they have been applied in automated deduction, in logic
programming, in formal program development, and other areas. During ana-
lytic proof search formulas in a sequent are decomposed into sub-formulas in a
stepwise manner. The structure of sub-formulas and of formulas which are not
decomposed is preserved. The preservation of structure is especially beneficial
when user interaction is required. A user can recognize structures which e.g. in
the context of formal methods [7] originate from a specification.

The relation between standard presentations of Hilbert type, natural deduc-
tion, and sequent calculi has been investigated by Avron [2] for the propositional
case. The additional structure in sequent calculi usually provides advantages in
proof search. In the presence of quantifiers additional differences between these
type of calculi arise. Gentzen’s rules for the elimination of quantifiers employ an
eager handling of instantiations. This causes a high-degree of non-determinism in
proof search which can be avoided by a lazy handling of instantiations with meta-
variables together with a computation of instantiations by unification. Skolem-
ization [13] is a well-known technique which guarantees that proofs constructed
with a lazy handling of instantiations can be validated in general. In the context
of sequent calculi, skolemization has been investigated for classical [4] as well as
for non-classical logics [12, 9].

The technique for simultaneous quantifier elimination presented in this ar-
ticle is specific to sequent calculi. It provides an optimization over the usual
approach for lazy handling of instantiations. The two justifications of its sound-
ness yield different insights in the dependencies between formulas of a sequent
in the presence of quantifiers.

After some fundamentals we present in section 3 a sequent calculus K with
a rule for simultaneous quantifier elimination. We point out its advantages in

KI-98: Advances in Artificial Intelligence, 22nd Annual German Conference on Artificial
Intelligence LNAI 1504, pp. 141-152. © Springer-Verlag 1998

2 Serge Autexier, Heiko Mantel, and Werner Stephan

comparison to usual handling of quantifiers in sequent calculus proof search. The
soundness of K is demonstrated in section 4 using semantical and in section 5
using syntactical arguments. We conclude with some remarks on related work.

2 Fundamentals

Basing on [10], we define syntax and semantics of first-order logic. A signature
XY is a pair (F,P) consisting of a set F of operation symbols and a set P of
predicate symbols. Each f € F has an arity ny € IN and each p € P has an
arity n, € IN. A X-algebra A has a carrier set S4 and assigns to each ng-ary
operation f € F a total function A(f) : (Sa)™ — Sa and to each predicate
p € P a np-ary relation A(p) C (Sa)"». Constants are 0-ary operations.

Syntax of First-Order Logic. The set T'x;(V) of first-order terms for a sig-
nature X and a set V of variables is defined recursively. For each € V holds
z € Tx(V). If ty,...,t,, € Tx(V) then for any ng-ary operation f € F holds
fte, .. tn,) € Te(V). The set wff(X, V) of first-order formulas for X = (F,P)
and V is defined recursively. For t1,...,t,, € Tx(V) and p € P with arity n,, the
expression p(t1,...,tn,) is an atomic formula in wff(X,V). If ¢ € wff(X,V)
and xz € V then —p, o A, p V1, Va.p,z.0 € wif(X,V) are formulas.

For a term ¢ the function Var returns the variables and Op the operations
which occur in ¢. The function free which returns the free variables of a formula
is defined recursively over the structure of formulas, i.e. free(p(ti,...,ts,)) =
Uiz, Var(t;), free(—p) = free(yp), free(p(1p) = free(p)Ufree(tp), and free(gx.go) =
free(p) \ {z}. Op returns for ¢ the operations which occur in ¢.

Semantics of First-Order Logic. The value A(a)(t) of a term ¢t € Tx (V)
and the value A(a)(p) of a formula ¢ € wff(X,V) for a Y-algebra A and an
assignment « : V — S4 where free(p) C V is respectively an element of the
carrier set S4 or a truth value (true or false).

—A(a)(z) = a(z) forz € V,

- Ala f(tla s atnf) = A(f)(A(a)(tl)a s ,A(Oé)(tnf)),

A (tn,)) € AW),

— A(a) (1 {p2) = trueiff A(a)(p1) = true aélrd A(a)(p2) = true,
— A(a)(Yz.p) = true iff (A(afa/z])(p) = true (L2 g e A(s)).
where afa/z] is the assignment: afa/z](z) = a and afa/z](y) = a(y), if y # =.
A formula ¢ is valid in a X-algebra A (A Ex) iff for any assignment « holds
A(a)(p) = true. A formula @ is valid (=5 @) iff it is valid in every X-algebra.

Substitutions. Let X be a signature and V be a set of variables for X. A
function o : V — T's(y) is called a substitution. The application of a substitution
to a formula ¢ € wff(X,V) yields a formula o(p), where all free occurrences of
variables z € V are replaced by o(x). If ¢ is the identity except for a finite number
of variables z1,...,2,, we denote o by [o(z1)/z1,-..,0(zn)/zs]. Dom(o) =
{z1,...,zp} is called the domain of o. A substitution o is admissible for if for
every sub-formula Qz.¢' of ¢ holds z ¢ o(y) for all y € free(Qz.¢"). We require
substitutions to be idempotent and admissible.

Simultaneous Quantifier Elimination 3

The following theorem states a fundamental relationship between substitu-
tions and assignments. For a proof we refer the interested reader to [10].

Theorem 1 (Substitution Theorem). Let V be a set of variables for a sig-
nature X, o : V — Tx(y) a substitution, A a X-algebra, and 3 : V — Sa
an assignment. Then for every t € Tx(yy holds A(B)(o(t)) = A(a)(t), where
a:V — Sa is an assignment defined by a(z) := A(B)(c(x)) for every x € V.

We restrict ourselves throughout this article to formulas in negation-normal
form, i.e. formulas where negation — occurs only directly in front of atomic
formulas. Using the de-Morgan laws any first-order formula can be transformed
into an equivalent formula which is in negation normal form.

Sequents. A (one-sided) sequent s is a set I' of formulas in negation-normal
form denoted by — I'. We define free(— I') =, free(). Given an algebra
A and an assignment a : V — S with free(s) C V. The wvalue A(a)(s) is true
iff A(a)(p) = true for some p € I'. s is valid in an algebra A (A [y s) if for all
assignments a A(a)(s) = true. s is valid (=5 s) if it is valid in all algebras.

A sequent calculus is a pair (Az, Inf). Az is a finite set of axiom schemes each
of which is a decidable set of sequents. Inf is a finite set of inference rules. Each
inference rule consists of a decidable set of pairs (s1,..., s,),s where s1,...,5,
and s are sequents. s is called the conclusion and si,..., s, the premises of the
inference rule. A principal formula is a formula that occurs in the conclusion but
not in any premise. Formulas which occur in a premise but not in the conclusion
are called side formulas. All other formulas compose the context. Sequent rules
can be represented graphically where the conclusion is written underneath the
premises and separated from them by a horizontal line. A derivation of a sequent
s from a set of sequents S is a finite sequence of sequents sq,...,s; with & > 1
and s, = s such that for each ¢ < k holds s; € S, s; is an axiom in Az, or there
exist indices i1, .. ., i, such that there is an inference rule in Inf with conclusion
s; and premises $;,,...,8;,. A sequent s is said to be derivable from a set of
sequents S (S | s) if there exists a derivation from S for it.

The one-sided sequent calculus K. for formulas in negation normal form! is:

oz — o1 — T2 R — 101,02 v —TI,p[c/z] v —I,p[t/z]
—Tp,m¢ — T, 01 P2 —T,p1 Vo —I'\Vz.@ — I3z
* ¢ must not occur in — I',Vz.p (Eigenvariable condition). *% ¢t may be any term.

In analytic proof search with K. one starts with the sequent to be proven and
reduces it by application of rules until the az-rule is applicable.

3 Simultaneous Quantifier Elimination

The quantifier rules of K. cause problems in analytic proof search. Whenever the
J-rule is applied a term ¢ must be guessed immediately. To postpone the choice
of t until more information about good choices of ¢ are at hand is a superior
approach. In order to do so the rule 3’ depicted below inserts a free variable

! The restriction to formulas in negation-normal form and to one-sided sequents has
only presentational purposes. The theory presented in this article could also be de-
veloped for arbitrary formulas and two-sided sequents.

4 Serge Autexier, Heiko Mantel, and Werner Stephan

X (sometimes also called meta-variable) which is implicitly existentially quanti-
fied. Thus, it may be instantiated later during proof search. However, precautions
must be taken to guarantee the correctness of the resulting proofs because not
all possible instantiations are admissible. Skolemization is used for this purpose.
The rule Skolem inserts a skolem-term consisting of a new function symbol with
all free variables of the sequent as arguments. Free variables may be instantiated
during proof search. The instantiation of a variable affects all parts of a deriva-
tion where the variable occurs, i.e. Inst is a rewrite rule on derivations rather
than an ordinary sequent rule. The occur-check ensures that a variable X can
only be substituted by terms ¢ which do not contain X.

— o[X/ 7] y —Ip[f(Z)/z] " W wv Inst(X,t)**
— I3z —I'Vz.p Skolem

* f must not occur in s =— I',Vz.p and Z must contain all free variables of s.
% X must not occur in ¢ and all variables and operations in ¢ must also occur in the
left-hand side proof-tree.

The calculus K4 results from K. by adding the rules &', Skolem, and Inst while
the rules 3 and V are removed.

The use of free variables and skolemization allows to postpone the instan-
tiation until it can be computed, e.g. by unification. Nevertheless, if multiple
quantified formulas occur in a sequent a principal formula must be determined.
Although in some cases a principal formula can be chosen in a safe way, in gen-
eral, the right order of reductions cannot be calculated from a sequent. This is
demonstrated by the following example.

Ezample 1. Below a Kg-derivation with six rule applications is depicted.
—ro(X1,£1(X1),21),~¢(Z2, X2, f2(X1,X2))
— (X1, /1(X1),21), 3220 (22, X2, f2(X1,X3)) ,
——321.0(X1, f1(X1),21),322.—~@(22, X2, f2(X1,X2)) Zkolem
—3z1.0(X1,f1(X1),21),Vy2.322.7¢(22,X2,y2) ,
—321.0(X1,f1(X1),21),322.Vy2.320. ¢ (22,22,Y2)
—Vy1.321.9(X1,y1,21),3z2.Vy2.322.mp(22,22,y2)

Skolem

’

—3z1.Vy1.321.0(21,Y1,21),322.Vy2.322. 790 (22,22,y2) :
The proof attempt would have failed if we first had reduced the second formula.

A Rule for Simultaneous Quantifier Elimination. Simultaneous quantifier
elimination is based on skolemization. However, it is superior since it allows a lazy
handling of both instantiations and reduction orderings on quantified formulas.

We define quantifier lists gl recursively starting from the empty list € and for
a variable z by Vz.gl’ and Jz.ql’. In order to simplify the following definition we
assume generators vgen and fgen which respectively generate new symbols for
variables and operations on every call.

We define the quantifier elimination function QE which takes a quantifier list
ql, a formula ¢, and a set Z of variables as arguments and returns a formula. gl
determines which quantifiers shall be eliminated from ¢. Z is used in order to
determine the arguments of skolem functions.

- QE(€7 ®, Z) =¥,
- QE(Vz.ql,p, Z) := QE(al, [f(Z)/x], Z), where f := fgen is new.
- QE(3z.ql, ¢, Z) := QE(ql, p[X/z], Z U {X } where X := vgen is new.

Simultaneous Quantifier Elimination 5

The rule SQEI for simultaneous quantifier elimination is depicted below.
— T, n
—Iqly.@1,..,4l, .0n SQEI*

* For each ¢ (1 < i < n) must hold ¥; = QE(ql;, ¢, free(— I',qly.¢1,.--,al,-¢n))-

The calculus K results from Ky, by replacing the rules 3 and Skolem by
SQE!L . K is complete with respect to K, i.e. for every sequent s which is Kg-
derivable there is a K-derivation, since 3" and Skolem can be simulated by SQEL
However, SQFI has advantages compared to these rules because one does not
need to bother about the order of certain reductions.

Ezample 2. We reduce our example sequent by SQFEI.
—ro(X1,f1(X1),21),m9(Z2,X2,f2(X2))
—3z1.Vy1.321.9(z1,y1,21),322.Vy2.322.m¢(22,22,y2)

SQEI

A comparison to example 1 shows the advantages of simultaneous quantifier
elimination. First, one does not need to worry about the order of quantifier
eliminations. Second, the skolem term in the second formula depends only on
X5 and not on both X; and X5 as in example 1. This shows that the quantifier
elimination of different formulas in a sequent do not depend on each other.

Remark 1. In the Isabelle system [11] for example a dual technique to skolem-
ization is employed. According to this technique a universally quantified formula
Vz.p(x) is reduced to A z.p(z) and an existentially quantified formula Jx.¢(x)
to ¢(?x) where A is a meta-logic quantifier and ?z is a (higher-order) meta-
variable. Due to lifting over quantifiers meta-variables receive arguments which
essentially determine which constants may be used in instantiations. This causes
close interdependencies between formulas in a sequent which are not present
when skolemization is applied. Before a constant may be instantiated, i.e. ap-
pear as an argument of a meta-variable, the corresponding quantifier must have
been reduced already. Therefore, it appears to be quite difficult to develop an op-
timized handling of quantifiers equivalent to SQFI for this technique. For details
of the technique we refer the interested reader to [11].

4 Semantical Justification

In this section we present a correctness proof for £ using semantical arguments.
For this purpose an auxiliary calculus X,y is defined which allows to reason
about sequents with substitutions. The explicitly stated substitutions are used
for meta-level arguments only. We prove the soundness of K 4, and then conclude
the soundness of K from that. In the process we introduce orderings on constants
and variables, an approach which is motivated by orderings on positions in the
context of matrix characterizations.[3, 14]

Sequents with Substitutions. A sequent with substitution s is a pair —
I'; o consisting of a sequent — I' and a substitution o. We define free(s) =
Uger free(o(¢)). The value A(e)(s) is truein an algebra A under an assignment
a:V — S where free(s) C V iff A(a)(— o(I")) = true.

Below, we define the auziliary quantifier elimination function QE,,, which
takes a quantifier list ql, a formula ¢, a set O of constants and variables, and

6 Serge Autexier, Heiko Mantel, and Werner Stephan

a binary relation < over O as arguments. ql determines which quantified vari-
ables shall be eliminated from ¢. In O the set of all constants and variables
introduced during the elimination are collected while a relation over these sym-
bols is collected in <. QE,,, returns a triple consisting of a formula ¢', a set
O' of constants and variables, and an ordering <’ over O'.
- QEaum(ev Ps 07 <<) = (507 07 <<)=
- QE, . (Va.dl, ¢, 0, <) = QEq,,(al, plc/z], O U {c}, K U{(0,¢) | Vo € O}),
where ¢ := fgen is new.
where X := vgen is new.
Example 3. With the appropriate symbols generated by vgen and fgen the value
of (Vz13y1Vz1,0(21,y1,21),0,0) under QE,,,,, is
<<10(X17 C1, Zl)J {X17 C1, Z1}7 {(Xla Cl); (Xla Z1)7 (Cl7 Zl)})

Orderings on Constants and Variables. QE,_,,.. eliminates quantifiers in the
order in which they occur in ql. This order is represented by the relation < on
the variables and constants introduced during elimination which is returned by
QE,,.- Clearly, < is an ordering, the guantifier list ordering.
For a set of variables V, a set of constants C, and a substitution o we define
two relations ~C ¥V x V and CC (VUC) x V as the minimal relations such that:
—for any u,v € V if o(u) = v then u ~ v,
—for any u € V and v € CUV if v occurs in o(u) and o(u) # v then v C u,
—and for any u,v € Vif v C u and u ~ v’ then v C v'.
We combine given orderings C and < to a relation <C (C U V)?, i.e. <= (C
U <)t where T denotes the transitive closure. Indicating that < is intended to
be usually irreflexive we call it a reduction ordering. If < is a reduction ordering
over some set O of variables and constants and O’ C O, then the restriction of
< to O' is defined by <1o:= {(0,0") | (0,0') €< and 0,0’ € O'}.

Calculus for Sequents with Substitutions. The auxiliary calculus K,y is
depicted below. Substitutions are explicitly stated and do not change in a 44~
proof. This is not problematic since we use the calculus only to reason about
its soundness but not for proof search. Note, that in contrast to K in K4y no
skolem-terms are introduced during quantifier elimination.

— 150 — g0 — L1, Pns0 x —ld'5o
azr A SQE! —_—
— o, g0 — I p1Apaio —Ialy.p1,..5d], . 0n50 aue
x For each i € {1,...,n} holds (¢i,0; <;) = QE_,.(ali, pi, free(— 'y Y1,...,%2),0), C
the ordering from o, < = (Ul_; <), <= (C U)1, O = U7, O; the set of (free)
variables and constants occurring in the premise and <o is an irreflexive ordering.
x Where 0 o 0/ = o holds.

Example 4. The orderings <, C, and <o for the following rule application are

depicted in the diagram to the right. < is symbolized by solid 7y Zs
arrows and C by dashed arrows. |

—0(X1,61,71),-9(Xa,02,Z2)i{ Za/ X1,¢1/ X2,c2/ 71 } S0 (cll cf
—3z1.Vy1.321.0(21,Y1,21),322.Vy2.320.mp(22,y2,22);{ Z2/ X1,c1/ X2,c2/Z1 } X; X

Theorem 2 (Soundness). If there exists a Kaux-proof P of a sequent with
substitution s then s is valid.

Simultaneous Quantifier Elimination 7

Proof. The proof is by induction on the structure of P. The base case where
‘P consists only of an application of az is trivial. In the induction step a case
distinction depending on the last rule application in P is made. We concentrate
on the interesting cases where A, Subst, or SQEI,,, is applied. In each case
we assume that all premises of the rule are valid and infer the validity of the
conclusion. For a more detailed proof we refer the interested reader to [1].

— Let A be the last rule applied in P. We assume that for every algebra A and
every assignment « holds A(a)(— I, p1;0) = true = A(a)(— I, ps;0).
Let A be an arbitrary algebra and a be an arbitrary assignment. If there is
a F' € I'" such that A(a)(c(F)) = true, then A(a)(— I, 1 A pa;0) = true
holds trivially. Otherwise, A(a)(o(p1)) = true = A(a)(o(p2)) must hold
which implies A(a)(— I, p1 A @2;0) = true.

— Let Subst be the last rule applied in P. We assume that for every algebra A
and every assignment « holds A(a)(— o'(I");0) = true. According to the
side condition of the rule holds ¢ o ¢' = 0. Thus, — o(I") =— o(o'(I"))
and the validity of the conclusion follows.

— Let SQEL,,,, be the last rule applied in P. The proof is done by induction over
the number m of quantifiers eliminated, i.e. the sum of the lengths of the ql;.
The base case where m = 0 is trivial, since the premise and the conclusion
are the same sequent. We first prove the case m = 1 with s =— I', Qx.p; 0.

o If @ = 3, we assume that for every algebra A and every assignment
a holds A(a)(—> I,¢[X/z];0) = true. Let A be an arbitrary alge-
bra and a be an arbitrary assignment. The interesting case is where
A(a)(o(F)) = false for all F' € I and A(a)(o(¢[X/x])) = true. Let o'
be the restriction of ¢ to free(I" U {3x.¢}). Then
true = A(e) (o (p[X/7])) = A(a) (o’ (¢[X/x])) = A(a)((¢'(¢))[o’ (X)/=])

= A(a[A(a)(d'(X))/x])(c' (¢)) by substitution theorem
= A(a)(3z.0'(p)) by definition of the semantics of 3
= A(a)(0'(Fr.¢)) = A(a)(0(Fa.9)) = A)(— I, In.450)

o If) =V, we assume that for every algebra A and every assignment «
holds A(a)(— I, ¢[c/z];0) = true. Let A be an arbitrary algebra and «
be an arbitrary assignment. The interesting case is where A(a)(o(F)) =
false for all F' € I" and A(a)(o(p[c/z])) = true. We consider all variants
A, of A, i.e. all algebras which differ from A only in the interpretation of
¢ such that A,(c) = a. The side-condition of SQEI,,, and the definition
of QE,,, ensure that X < c holds for every X € free(— I'\Vz.¢;0).
Because < is required to be irreflexive for any F' € I', ¢ does not occur
in o(F) and thus, A,(a)(c(F)) = A(a)(o(F)) = false. Let ¢’ be the
restriction of o to free(I" U {Vz.¢)}. Then for all A, holds
true = Ag(a)(o’ (plc/z])) = Aa(@)((0’(¢))[c/x]) since o’ is admissible

= Aq(a[Aq(c)/z]) (o' (p)) by substitution theorem
= Aa(ala/z]) (o’ () -
For every a € S4 there is an A,, thus A(a)(— I,Vz.p;0) = true.
In the induction step we assume the soundness of SQEI,,, for the elimi-
nation of less than m quantifiers (m > 1) and show the soundness for m
quantifiers. The irreflexivity of < ensures that there is a maximal element

8 Serge Autexier, Heiko Mantel, and Werner Stephan

o € O with regard to <. According to the definition of [o is not instantiated
for any variable in O. Let o be introduced by the elimination of @ jx.z/);-. We
split the application of SQEI,,, as follows into two applications of the rule
where each of the applications reduces less than m quantifiers. Due to the

choice of ();x.¢; the side conditions for both rule applications are fulfilled.
—I,91,..., ’Pj Pn o

SQEl,,, 1 quantifier elimination

SQEL,,, (m—1) quantifier eliminations

Remark 2. In the induction step of the above proof we show that it is always
possible to focus on a single formula in a sequent. In the case where the rule
SQEl,,, is the last rule applied this is non-trivial because multiple formulas are
reduced in a single rule application. Free variables in a sequent cause dependen-
cies between formulas. Only the side condition of the rule SQEFEI,,,, allow us to
single out a specific formula according to the reduction ordering and ensure in
the case V that this formula is valid in all variants of a specific algebra.

Theorem 3 (Soundness).If there exists a K-proof for a sequent then it is valid.
Proof. There are three differences between K4y and K. In K4y, a substitution
is explicitly stated in sequents, Eigenvariables have no arguments (i.e. are no
skolem-terms), and the Subst-rule is a sequent rule while the Inst-rule of K is a
rewrite rule on proof trees. Proof search in K,y would require that an appro-
priate substitution is guessed before any rule may be applied. None of the rules
in K4qz is capable to modify this substitution. This appears to be impractical,
however, K4y, is only an auxiliary calculus. We argue that the skolemization
based technique applied in K is a realization of the constraints imposed by K gyq-

During proof search in K substitutions can only be applied globally to the
proof tree using the Inst-rule. From all applications of Inst in a K-proof P of
a sequent s a substitution o can be constructed such that a Kguz-proof Pauz
for s;0 exists. Pgyp can be constructed inductively from P. An application of
Inst in P results in an application of Subst on all open leaves of Pgyz. An ap-
plication SQEI results in an application of SQEI,,,,. Skolemization ensures that
the side-condition of SQEI,,, holds, i.e. <o is irreflexive. If <o would not be
irreflexive, then by construction of <o the substitution were not idempotent —
a contradiction. Any other K-rule is mapped to the respective K gqyqp-rule.

5 Syntactical Justification

Since the early seventies systems have emerged that use interactive proof strate-
gies based on complex user defined proof rules. The soundness of these systems
is guaranteed by explicitly performing a proof in the basic calculus for each (ap-
plication of a) derived rule (or tactic). This proof theoretic approach is simple in
the sense that no additional formal concepts are required. All we need is a sys-
tem architecture that keeps up a consistent state of the overall proof generation
process and forces us to expand all derived steps.

We present a generalization of this approach where in a formalized meta-
language we prove that a proof exists for all instances of a derived rule. As
compared to tactical theorem proving here additional meta-logical concepts are
required. However, the approach still is uniform in the sense that it relies on

Simultaneous Quantifier Elimination 9

a fixed collection of formal concepts that are syntactic in nature. A main mo-
tivation of this paper is to compare this approach to a semantic justification
which uses various concepts from model theory but which of course also could
be formalized in a meta-level formalism.

The syntactic (or proof theoretic) approach seems to be particular useful
for proof generation mechanisms that themselves use meta-level notions. For
example, it provides a simple and clear semantics for meta-variables as place-
holders for syntactic objects, like (object-level) variables, terms, and formulas.
The approach is not limited to cases where the objects involved are first-class
citizens with respect to (object-level) quantification nor is it restricted to meta-
variables. In the context of the quantifier elimination rule also Skolem-functions
are meta-level symbols.

The meta-level justification of quantifier elimination is local in the sense that
we are able to guarantee a proof that replaces the derived step without any
further proof transformation.

Basic Notions. We assume that the abstract syntaz of the underlying object
language is given as an abstract data type. Basic (static) types for this data
structure include V' for (object-level) variables, TERM for (object-level) terms,
and FOR for (object-level) formulas. The axiomatization uses constructor sym-
bols, like mk-and : [FOR, FOR — FOR] and mk-ez : [V, FOR — FOR)] for building
up conjunctive and existentially quantified formulas, respectively. Selectors are
used to decompose structured objects. As usual predicates, like Ex and All serve
to detect the kind of formula we are dealing with.

In addition to the abstract syntax of the object language we rely on auzil-
iary data structures, like natural numbers (NAT), lists (LIST(...)), and trees
(TREE(...)). For lists we use the following notation:

— emptyl : LISTY(...) for the empty list

- cons:|[...,LIST(...) - LIST(...)] for adding an element in front of a list

- - ¢ [LIST(...),LIST(...) = LISTY(...)] for concatenating lists

- . +[LIST(...), NAT — ..] for selecting elements

- 4 [LIST(...), NAT — LISTY(...) for computing the initial segment

- || :[LIST(...) = NAT] for the length of a list

— :[LIST(...),LIST(...) — LISTY(...)] for removing all occurrences of
elements given by the second list from the first list.
Above the level of formula we have sequents and (proof) trees built up by mk-seq :
[LIST(FOR),LIST(FOR) — SEQ)] and mk-tree : [SEQ, LIST(SEQ) — TREE(SEQ)].

The function given by fv; : [FOR — LIST(V')] computes a list containing all
variables that have (free) occurrences in a formula. For terms we use fv;. fv}
and fuv} are extensions to lists of formulas and terms, respectively. Substitutions
are computed by subst : [FOR,V, TERM — FOR).

As our meta-language we use a higher-order language where all function
symbols are interpreted as total functions.

Metalevel Representation of Simultaneous Quantifier Elimination. In
a first step we define a set of trees given by a predicate Qe. Not all instances
of this scheme represent valid proof steps. Those trees for which a proof in the
basic calculus exists are filtered out by additional constraints later on.

10 Serge Autexier, Heiko Mantel, and Werner Stephan

Vt : TREE(SEQ).Nfl : List(FOR).VI : LIST(LIST(TERM)).
Vm : LIST(LIST([LIST(V) — V1)) Nq : LIST(NAT).
Qe(t, fl,1,m,q) < (Fits(fl,1,m,q) A
t = mk-tree(mk-seq(emptyl, fl), cons(mk-seq(emptyl, elim™ (1,1, m, q)),emptyl)))

The succedent of the conclusion of the rule is given by fI the antecedent of both
the conclusion and the premise being empty. The terms that are substituted for
existential quantifiers are given by [. For each formula in fI there has to be a list
in [of appropriate length. In the same way m contains lists of so-called Skolem-
functions used to replace universally quantified variables. In the current stage
of the development the functions in the lists of m are not constrained at all. All
we know is their type: [LIST(V) — V]. From this we already see that Skolem-
functions compute (object-level) variables. Finally ¢ determines the number of
quantifiers that we want to remove from the quantifier prefix of each formula
in fl. If there is no quantifier prefix for a member of fI then the corresponding
number in g has to be zero. This as well as other (more or less obvious) syntactic
constraints for the arguments are formalized by Flits.

We continue with the definition of elim*(fl,1, m, q) which computes the succe-
dent of the premise of the rule:

elim” (fl1,1,m,q) = el*(fl,1,m,q,0) n = |q| — el*(f1,1,m,q,n) = emptyl
(n<|q| = el*(fl,l,m,q,n) =
cons(elim(fl, fl.n,l.n,m.n,q.n,0,0), el (fI,l,m,q,n + 1))

The function elim successively removes one quantifier after the other. Exis-
tentially quantified variables are replaced by terms given by the third argument.
These terms correspond to the meta-variables used by the object-level proof
procedure. The Skolem-functions given by the fourth argument are used to re-
place universally quantified variables. Skolem-functions are applied to a list of
variables containing the free variables of fI and those variables occurring in the
terms that have been substituted for existentially quantified variables before.

(Ez(f) Ni#0) — elim(fl, f, 1, sl,4,u,v) =
elim(fl, subst(body(f), bvar(f),tl.u),tl, sl,i — 1, v+ 1,v)
(AU(F) Ni 2 0) = elim(f1, f, t, sl,4) =
elim(f1, subst(body(f), bvar(f), slo(fv;(f1) - fui (L1 w))),tl,sl,i —1,u,v + 1))
(mEz(f) Vv -AU(f) Vi Z0) = elim(fl, f,tl,sl,i) = f

We are left with the problem of filtering out the valid instances of Qe. This
is done by introducing an additional list of natural numbers e which defines a
possible order of sequential quantifier elimination steps. If we have e.n = ¢ this
means that in the n'” step the leading quantifier of the i** formula is removed.
Of course e has to be constrained with respect to fl and g. For example the
number of occurrences of ¢ in e, denoted by f(e, %), has to be equal to the g.i.
These additional constraints are formalized by Adm(e, fI,q).

The main problem that has to be solved is to provide a suitable meaning for
the Skolem-functions given by the lists in m. Note that (m.i).j is the Skolem-
function used to eliminate the j* universal quantifier in the i** formula. We

Simultaneous Quantifier Elimination 11

define:
Skol(fl,1,m,q,e) < V0 < i< |m|V0 < j < |m.i|]. (m.i).j=
Al : LIST(TERM). s((fv" (elim*(fl,1,m, red(q, fl, e,1,7))) — fo* (f1)) - tl),
where the reduced list red(q, fl,e,1, j) is defined by
Y0 < k < |m|. red(q, fl,e,i,5).k = ti(e | step(fl,e,1,7),k) .

s is a fixed function (the basic Skolem-function) that computes a variable which
is not contained in the list of variables given as an argument and step(fl,e,1, j)
is the step in e in which the j** universal quantifier of fl.i is removed.

Using this predicate we can clarify the nature of our syntactic Skolem-
functions by proving the following basic theorem:

Vt : TREENl: LIST(FOR) VI : LIST(LIST(TERM)).
Vm : LIST(LIST([LIST(V) — V1)).Vq : LIST(NAT).Ye : LIST(NAT)
((Admde, fl,q) N Qe(t, f1,1,m,q) A Skol(fl,1,m,q,e)) = Prou(t))

Unfortunately this result is not yet satisfactory since during proof con-
struction we allow substitutions involving Skolem-functions. To treat substi-
tutions (for metavariables denoting terms) we replace fI and ! by functions
fl: [LIST(TERM) — LIST(FOR)] and [: [LIST(TERM) — LIST(LIST(TERM))].
The function ¢ : [LIST(LIST([LIST(V) — V])) — LIST(TERM)] provides the
right hand sides of the substitutions.

Making the substituted terms depending on a structure m (of functions) al-
lows to formalize substitutions that involve Skolem-functions. Every substitution
occurring in the actual proof process can be represented as a list gl.

Again, fl,1,gl, and ¢ have to fit together which is expressed by the predicate
Fits,s. Using these additional notations we are able to prove:

Vgl.Vﬁ.Vi.Vq.(Fitss(fl, I,gl,q) = Em.ﬂe.(Fits(ﬁ(gl(m)), I(gl(m)), m,q) A
Adm(e, fl(gl(m)),q) A Skol(fl(gl(m)),i(gl(m)),m, q,€)))

Since the definition of gl allows the nesting of functions the choice of e (and
therefore also of m) really depends on gl. In this way we have modelled the fact
that the fullsemantics of the Skolem-functions can only determined a posteriori,
that is after a substitution has been applied.

The meta-level formalization we have presented exactly models the usage
of the quantifier elimination rule by separating the visible part, given by the
argument list of the elements in m, from the hidden part, given by the additional
arguments supplied to s. It is this hidden part that can only be determined after
a substitution has been made.

6 Conclusion

We defined the sequent calculus X which incorporates a rule for simultaneous
quantifier elimination. K is sound and complete. The more difficult proof of the
soundness theorem has been carried out by semantical as well as by syntactical
arguments. While the semantical perspective clarifies the interdependencies of
formulas in a sequent the syntactical approach allows to translate X-proofs into

12 Serge Autexier, Heiko Mantel, and Werner Stephan

usual sequent proofs which do not contain any meta-level constructs. This trans-
lation preserves the structure of a proof. Subsequently, simultaneous quantifier
elimination can be used in sequent calculi for non-classical logics as well. The
simultaneous quantifier elimination rule presented in this article has been imple-
mented in the VSE II system for formal software development which is currently
under development at the DFKI as a successor of the VSE system [7].

Other systems handle quantifiers with different degrees of sophistication.
Lazy handling of instantiations has been used in classical as well as in non-
classical logics and in first-order as well as in higher-order formalisms. Except in
sequent calculus and natural deduction calculi, Skolemization has been studied
in the context of resolution, connection method and tableau calculi as well.

For instance in PVS [5] Gentzen-like quantifier elimination rules are used
where instantiations must be guessed. Ketonen and Weyhrauch [8] present an
approach where sequents are annotated by a substitution, like in the semantical
part of this article, and used a technique similar to our quantifier list order-
ing. However, they have only classical quantifier rules with the corresponding
non-determinism in proof search. In the Isabelle system [11] a technique dual
to classical skolemization is used. In remark 1 we have pointed out that this
technique causes close interdependencies between formulas in a sequent which
make it quite difficult to develop an optimized handling of quantifiers equivalent
to our simultaneous quantifier elimination rule.

References

1. S. Autexier and H. Mantel. Semantical Investigation of Simultaneous Skolemization
for First-Order Sequent Calculus, Seki Report SR-98-05, 1998.

2. A. Avron. Simple Consequence Relations, In Information and Computation 92,
p. 105-139, 1991.

3. W. Bibel. Automated Theorem Proving. Vieweg Verlag, 2nd edition, 1987.

4. K. A. Bowen. Programming with full first-order logic, In Hayes, Michie, Pao, Eds.,
Machine Intelligence 10, 1982.

5. J. Crow, S. Owre, J. Rushby, N. Shankar and M. Srivas. A Tutorial Introduction
to PVS, Presented at WIFT’95, 1995.

6. G. Gentzen. Untersuchungen tber das logische Schlieflen, Mathematische
Zeitschrift. 39:179-210 and 405-431, 1935.

7. D. Hutter, B. Langenstein, C. Sengler, J. Siekmann, W. Stephan and A. Wolpers.
Verification Support Environment (VSE), High Integrity Systems, p. 523-530, 1996.

8. J. Ketonen and R. Weyhrauch. A Decidable Fragment of Predicate Calculus, In
TCS, Volume 32-3, 1984.

9. P. Lincoln and N. Shankar. Proof Search in First-Order Linear Logic and other
Cut-Free Sequent Calculi, In Proceedings of 9th LICS, p. 282-291, 1994.

10. J. Loeckx, H.-D. Ehrich and M. Wolf. Specification of Abstract Data Types, Wiley-
Teubner, 1996.

11. L.C. Paulson. Isabelle, A Generic Theorem Prover, Springer Verlag, 1994.

12. N. Shankar. Proof Search in the Intuitionistic Sequent Calculus, In D . Kapur,
Ed., Proceedings of CADE-11, p. 522-536, 1992.

13. T. Skolem. Logisch-kombinatorische Untersuchungen iiber die Erfiillbarkeit oder
Beweisbarkeit mathematischer Sitze, In Skrifter utgit av Videnskapselskapet i Kris-
tiania, p. 4-36, 1920.

14. L. Wallen. Automated Deduction in Non-Classical Logic. MIT Press, 1990.

