Information Flow Control and Applications
— Bridging a Gap —

Heiko Mantel

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
mantel@dfki.de

Abstract. The development of formal security models is a difficult, time
consuming, and expensive task. This development burden can be consid-
erably reduced by using generic security models. In a security model,
confidentiality as well as integrity requirements can be expressed by re-
strictions on the information flow. Generic models for controling infor-
mation flow in distributed systems have been thoroughly investigated.
Nevertheless, the known approaches cannot cope with common features
of secure distributed systems like channel control, information filters, or
explicit downgrading. This limitation caused a major gap which has pre-
vented the migration of a large body of research into practice. To bridge
this gap is the main goal of this article.

1 Introduction

With the growing popularity of e-commerce the security of networked informa-
tion systems becomes an increasingly important issue. Since such distributed
systems are usually quite complex, the application of formal methods in their
development appears to be most appropriate in order to ensure security. In this
process, the desired security properties are specified in a formal security model.
This becomes a necessary task if the system shall be evaluated according to cri-
teria like ITSEC or CC (level E4/EALS5 or higher). However, the development
of security models is a difficult, time consuming, and expensive task. There-
fore it is highly desirable to have generic security models which are well suited
for certain application domains and which only need to be instantiated (rather
than being constructed from scratch) for each application. In a security model,
confidentiality as well as integrity requirements can be expressed by restrictions
on the information flow. Generic security models for information flow control
like [GM82,5ut86,McL96] are well-known. However, the use of such models for
distributed systems has been quite limited in practice. The main reason is that
the known models cannot cope with intransitive flow policies which are necessary
in order to express common features like channel control, information filters, or
explicit downgrading. In this article, we propose a solution to this problem.

In information flow control one first identifies different domains within a
system and then decides if information may flow between these domains or not.
This results in a flow policy. Next, a definition of information flow must be

J.N. Oliveira and P. Zave (Eds.): FME 2001, LNCS 2021, pp. 153-172, 2001.
© Springer-Verlag Berlin Heidelberg 2001

154 H. Mantel

chosen. The common intuition underlying such definitions is that information
flows from a domain D; to a domain D, if the behaviour of D> can be affected
by actions of D;. However, this intuition can be formalized in different ways and
at least for non-deterministic systems no agreement on an optimal definition of
information flow has been reached. Rather a collection of definitions co-exist.
Frameworks like [McL96,Z1.97,Man00a] provide a suitable basis for choosing an
appropriate definition for a given application since they allow one to investigate
the various definitions in a uniform way and to compare them to each other.

To achieve confidentiality or integrity by restricting the flow of information
within a system is a very elegant and thus appealing approach. However, the
assumptions underlying the existing approaches for information flow control are
often too restrictive for real applications. Even though information flow shall be
restricted in such applications, it must be possible to allow for exceptions to these
restrictions. Typical examples for such exceptions are that two domains should
not communicate with each other unless they use a particular communication
channel which contains an information filter, that a domain which has access to
sensitive data should not communicate with an open network unless the data has
been properly encrypted, or that data should not be publicly accessible unless
the data has been downgraded because a certain period of time has passed or
a particular event has occurred. In information flow control, such exceptions
can be expressed by intransitive flow policies. Intransitive policies indeed are
necessary for real applications as can be seen at case studies like [SRS100].
However, all known approaches (e.g. [Rus92,Pin95,RG99]) which are compatible
with intransitive flow are limited to deterministic systems ([RG99] can deal with
some, but severely limited non-determinism). Hence, they are not applicable to
distributed systems which are certainly the most interesting ones in the presence
of the Internet. The unsolved problem of how to cope with intransitive policies
created a major gap which has prevented the application of a large body of work
on information flow control in practice. To bridge this gap is the main goal of
this article in which we extend our previously proposed framework [Man00a] to
cope also with intransitive policies. We are confident that this is a major step
for bringing information flow control into practice.

The overall structure of a security model based on information flow control is
depicted in Figure 1. As usual, such a model consists of three main components:
a formal specification of the system under consideration, a specification of one
or more security properties, and a proof that the system satisfies these security
properties. In information flow control, a security property again consists of
two parts: a flow policy which defines where information flow is permissible or
restricted, and a formal definition of what information flow means.

In this article, we focus on definitions of information flow. Qur main contri-
butions are novel definitions which can cope with a class of flow policies, namely
intransitive policies, which, for non-deterministic systems, has been outside the
scope of the existing approaches (cf. Section 3). Moreover, we present an un-
winding theorem (cf. Section 4) which simplifies the proof that a system satisfies
a security property. How to develop system specifications, however, is not dis-

Information Flow Control and Applications 155

Specification of Security Property
System Specification - Flow Policy

stisies | | Definitionof
Information Flow

Specification Formalism / System Model

Fig. 1. Structure of a security model based on information flow control

cussed in this article. Nevertheless, we have to choose a specification formalism
in order to refer to the underlying concepts in the specification of security prop-
erties. In Section 2 we introduce such a formalism and also give an introduction
to security properties. We conclude this article by discussing related work in
Section 5 and summarizing our results in Section 6.

2 Information Flow Control

In this section, we give an introduction to the basic concepts of information
flow control before we turn our attention to intransitive information flow in
subsequent sections. In Section 2.1 we define a specification formalism, or more
precisely a system model on which such a formalism can be based. In Section 2.2
we introduce flow policies and provide various examples. Existing definitions of
information flow are investigated in Section 2.3.

2.1 Specification Formalism / System Model

For the formal specification of distributed systems one has a choice among many
different formalisms, like process algebras, temporal logics, or non-deterministic
state machines. Rather than choosing a specific syntactic formalism we use a
system model which is semantically motivated. This trace based model has al-
ready a tradition in the context of information flow control [McC87,JT88,Z197,
Man00a].

An event is an atomic action with no duration. Examples are sending or
receiving a message on a communication channel, or writing data into a file. We
distinguish #nput events which cannot be enforced by the system from internal
and output events which are controlled by the system. However, we do not make
the restricting assumption that input events are always enabled. At the interface,
input as well as output events can be observed while internal events cannot. The
possible behaviours of a system are modeled as sequences of events.

Definition 1. An event system ES is a tuple (E,I,0, Tr) where E is a set of
events, I,0 C FE respectively are the input and output events, and Tr C E* is
the set of traces, i.e. finite sequences over E. Tr must be closed under prefizes.

Although event systems are used as system model throughout this article, our
results are not limited to systems which are specified using event systems. To

156 H. Mantel

apply our results, it is sufficient that there exists a translation from the particular
specification formalism into event systems. We illustrate such a translation by
the example of state-event systems which will also be used in Section 4 where
we present an unwinding theorem. State-event systems can be regarded as event
systems which have been enriched by states. With this enrichment the pre-
condition of an event e is the set of states in which e possibly can occur. The
post-condition is a function from states to the set of possible states after the event
has occurred in the respective state. The notion of state is transparent. Note that
the occurrence of events can be observed while states are not observable.

Definition 2. A state-event system SES is a tuple (S,Sr,E,I,0,T) where S
is a set of states, Sy C S are the initial states, E is a set of events, I,0 C E
are the input and output events, and T C SX E X S is a transition relation.

A history of a state-event system SES is a sequence $j.e1.Ss ..., of states
and events. The set of histories Hist(SES) C S x (E x S)* for SES is de-
fined inductively. If s € Sy then s € Hist(SES). If sy.e1.52...5, € Hist(SES)
and (sn,€n,8n+1) € T then sj.e;.89...84.n.5n41 € Hist(SES). Each state-
event system SES = (S,S, E,I,0,T) can be translated into an event system
ESsgs = (E,I,0, Trsgs) where the set of traces Trsgs C E* results from
Hist(SES) by deleting states from the histories.

2.2 Flow Policies

Flow policies specify restrictions on the information flow within a system. They
are defined with the help of a set D of security domains. Typical domains are
e.g. groups of users, collections of files, or memory sections. We associate such a
security domain dom(e) € D to each event e € E.

Definition 3. A flow policy FP is a tuple (D,~v,~n,%) where ~ry,~n,
+ C D x D form a disjoint partition of D x D and ~v is reflexive. FP is called
transitive if ~»y is transitive and, otherwise, intransitive.

+» is the non-interference relation of FP and Dy + D, expresses that there
must be no information flow from D; to D,. Rather than having only a single
interference relation ~» to specify allowed information flow we distinguish two
relations ~» and ~» . While D; ~»y D5 expresses that events in D, are visible
for Dy, Dy ~ Dy expresses that events from D; may be deducible for D5 but
must not reveal any information about other domains.

We depict flow policies as graphs where each node corresponds to a secu-
rity domain. The relations ~y, ~»n, and % are respectively depicted as solid,
dashed, and crossed arrows. For the sake of readability, the reflexive subrelation
of ~»y is usually omitted. This graphical representation is shown on the left
hand side of Figure 2 for the flow policy F'P1 which consists of three domains
HTI (high-level input events), L (low-level events), and H\ HI (high-level inter-
nal and output events). According to F'P1, low-level events are visible for both
high-level domains (L ~»y HI, L ~»y H\ HI). High-level inputs must not be

Information Flow Control and Applications 157

FPL FP2 FP3
6 Vur Vi Vmur1
() FP1|(HUL.9,0)| (L, INHT,HD)|(HUL.0,0)
G Vu Vs Vr
FP2|(U,0,SUT)|(UUS,0,T) (UUSUT,0,0)
’ Vg Vi Vp
e FP3|(F,0,LUP)|(LUF,0,P) |(PUL,0,F)

Fig. 2. Example flow policies and corresponding basic scenes

deducible for the low-level (HI + L). Other high-level events may be deduced
(due to H\HI ~y L). However, such deductions must not reveal any informa-
tion about (confidential) high-level inputs. E.g. if each occurrence of an event
ho € H\H is directly preceeded by a high-level input hi € HI then an adversary
should not learn that ho has occurred because, otherwise, he could deduce that
hi has occurred. Thus, if an event e € H\ HI closely depends on events in HI
then nothing about e must be deducible for L. However, if e does not depend on
confidential events from HI then everything about e may be deducible.

Traditionally, F'P1 would be defined as a policy with two domains L, H and
the policy H + L, L ~» H. This leaves it implicit that high-level internal and
output events may be deducible for the low-level. Our novel distinction between
~y and ~py allows one to make such assumptions explicit in the flow policy.

I, O specifies the interface of a system when it is used in a non-malicious en-
vironment. This intended interface should be used when properties apart from
security are specified. However, in the context of security other interfaces must be
considered as well since usually not all internal events are protected against ma-
licious access. Making a worst case assumption, we assume that internal events
are observable. The view of a given domain expresses which events are visible or
confidential for that domain. Formally, a view V is a triple (V, N, C) of sets of
events such that the sets V, N, C form a disjoint partition of E.

Definition 4. The view Vp= (V, N, C) for a domain D €D in FP is defined by
V=U{D'eD | D'~y D}, N= J{D'€D | D'~>nD}, and C=\J{D'e D | D'4:D}.
The basic scene BS = {Vp| D €D} for FP contains views for all domains in D.

We call V' the wvisible, C' the confidential, and N the non-confidential events of
Vp. Only events in V are directly observable from a given view. Among the non-
observable events we distinguish events in C' which must be kept confidential and
events in N which need not. While events in C' must not be deducible, events in
N may be deducible, however, such deductions must not reveal any information
about confidential events in C'. Note that in Definition 4 each of the sets V, N,
C' is constructed using one of ~»y, ~»n, % (hence the indices).

Example 1. The basic scene for flow policy FP1 is depicted in the table on the
right hand side of Figure 2. Most interesting is the view of domain L. For this
domain, events in L are visible, events in HI confidential, and events in H\ HI

158 H. Mantel

may be deduced (but must not reveal information about events in HI). The
flow policy F'P2 defines a multi-level security policy. F'P2 could be used, for
example, to express the security requirements of a file system with files of three
different classifications: T' (top secret), S (secret), and U (unclassified). While
events which involve files must not be deducible for domains which have a lower
classification than these files, there is no such requirement for higher classifica-
tions. E.g. a user with clearance secret must not be able to learn anything about
events on top secret files but may learn about unclassified files.

Notational Conventions. Throughout this article we assume that ES de-
notes the event system (E,I,O, Tr), that SES denotes the state-event system
(S,S1,E,I,0,T), and that FP denotes the flow policy (D,~y,~n,7). The
projection a|p of a sequence a € E* to the events in E' C F results from « by
deleting all events not in E'. We denote the set of all events in a given domain
D also by the name D of the security domain and use that name in lower case,
possibly with indices or primes, e.g. d,ds, ..., to denote events in the domain.
For a given view V, we denote the components by Vy,, Ny, and Cy.

2.3 Formal Definitions of Information Flow

Various formal definitions of information flow have been proposed in the litera-
ture. Such a definition should accept a system as secure if and only if intuitively
there is no information flow which violates the flow policy under consideration.
The definitions of information flow which we investigate in this article follow the
possibilistic approach. This is already implied by our choice of a system model in
which only the possibility of behaviours is specified (in contrast to more compli-
cated probabilistic models, e.g. [WJ90]). The possibilistic approach is compatible
with non-determinism and allows us to abstract from probabilities and time.
When defining what information flow from a domain D; to a domain Ds
means, it is helpful to distinguish direct flow from indirect flow. Direct flow
results from the observability of occurrences of events in D, from the perspective
of D5. For a given view V = (V, N, C) all occurrences of events in V are directly
observable, i.e. for a given behaviour 7 € E*, the projection 7|y of 7 to the
visible events, is observed. Indirect information flow results from deductions
about given observations. We assume that an adversary has complete knowledge
of the static system, i.e. knows the possible behaviours in Tr. This is a worst
case assumption which follows the ‘no security by obscurity paradigm’. From
this knowledge an adversary can deduce the set {7 € Tr | 7|y = 7} of all traces
which might have caused a given observation 7 € V*. Confidentiality can be
expressed as the requirement that this equivalence set is big enough in order
to avoid leakage of confidential information. However, the various definitions of
information flow formalize this requirement by different closure conditions.
Non-inference [O'H90], for example, demands that for any trace 7 the se-
quence 7|y must also be a trace, i.e. V7 € Tr.7|y € Tr. Thus, for non-inference,
all equivalence sets must be closed under projections to events in V. For a sys-
tem which fulfills non-inference, an adversary cannot deduce that confidential

Information Flow Control and Applications 159

events have occurred because every observation could have been generated by a
trace in which no such events have occurred. Another possibilistic definition is
separability [McL96]. For any two traces 71, 73 it requires that any interleaving of
the confidential subsequence of 7; with the visible subsequence of 7 must, again,
be a trace. Thus, every confidential behaviour is compatible with every observa-
tion. Besides non-inference and separability, many other possibilistic definitions
of information flow have been proposed (e.g. [Sut86,McC87,JT88,ZL97,FM99])
which correspond to different closure conditions on the equivalence sets. In or-
der to simplify the investigation and comparison of such definitions, uniform
frameworks have been developed [McL96,Z1.97,Man00a].

Our assembly kit [Man00a] allows for the uniform and modular representation
of possibilistic definitions of information flow. Each such definition is expressed
as a security predicate which is assembled from basic security predicates (ab-
breviated by BSP in the sequel) by conjunction. BSPs can be classified in two
dimensions. In the first dimension, it is required that the possible observations
for a given view are not increased by the occurrence of confidential events. Other-
wise, additional observations would be possible and one could deduce from such
an observation that these confidential events must have occurred. In the second
dimension the occurrence of confidential events must not decrease the possible
observations. Otherwise, any of the observations which become impossible after
these events, would lead to the conclusion that the confidential events have not
occurred. In applications it can be sensible to emphasize one of these dimensions
more than the other one. E.g. if a system is equipped with an alarm system then
taking the alarm system off line must be kept confidential for possible intruders.
However, it might be less important to keep it confidential that the alarm system
has not been taken off-line because this is the default situation.

For the purposes of this paper it suffices to investigate two specific BSPs,
one for each dimension. Backwards strict deletion of confidential events (BSDy)
demands for a given view V = (V, N, C) that the occurrence of an event from C
does not add possible observations. Considering the system after a trace § has
occurred, any observation @ € V* which is possible after ¢ € C must also be
possible if ¢ has not occurred. If the observation @ results from a € (V U N)*,
i.e. aly = @, after ¢ has occurred then some o' € (V U N)* must be possible
after ¢ has not occurred where o' may differ from « only in events from N. For
a given view V = (V, N, C), BSDy, is formally defined as follows:

BSDy n,c(Tr) =Va,p € E*Nce C((B.ca€ TrAalc =())
=3Ja' € E*.(d|yv =aly Ad|c =) AB.o/ € Tr)) .

Note that the definition of BSDy becomes much simpler if N = {), i.e.
BSDy p.c(Tr) =Va,f € E*Nce C((B.ca € TrhNalc =()) = f.a€ Tr).

If N is non-empty then the general definition of BSD is required for a correct
handling of events in N. To allow such events in « and to allow their adaption in
o' opens the spectrum from being deducible (but independent from confidential
events) to being closely dependent on confidential events (but not deducible).

160 H. Mantel

Backwards strict insertion of admissible confidential events (BSTAy) requires
that the occurrence of an event from C does not remove possible low-level ob-
servations. @ and o' are related like in BSD. The additional premise S.c € Tr
ensures that the event ¢ is admissible after 8 which is a necessary condition for
dependencies of confidential events on visible events [ZL97,Man00a).

BSIAy N,c(Tr) =Va, € E*Nce C((f.a € TrAalc = () ANB.c € Tr)
= 3da' € E*.(d|lyv = a|ly ANd|c =) A B.c.d' € Tr))

Inductive definitions of BSPs like BSD and BSIA were helpful to identify the two
dimensions and simplified the development of unwinding conditions [Man00b].
They also provide a basis for handling intransitive policies in Section 3.

Recall that security predicates are constructed by conjoining BSPs. Each
security predicate SP is a conjunction of BSPs. Often, one BSP from each
dimension is taken. For example constructions of security predicates we refer
to [Man00a]. Security predicates are parametric in the event system and in the
flow policy. Fixing the flow policy yields a security property SP = (SP, FP).

Definition 5. Let SPy = BSP‘I,/\. ..NBSP}; be a security predicate and FP be
a transitive flow policy. The event system ES satisfies (SP, FP) iff BSP}(Tr)
holds for each i € {1,...,n} and for each view V in the basic scene BS pp.

Ezample 2. Let ES = (E,I,0, Tr) be an event system which specifies a three-
level file system and F' P2 (cf. Figure 2) be the flow policy for ES. Assume that
information flow is defined by the security predicate SPy, = BSDy A BSIAy.
This, together with D = {U, S, T} implies that the following theorems must be
proved: BSDy,,(Tr), BSDy(Tr), BSDy,(Tr), BSIAy,(Tr), BSIAy,(Tr), and
BSIAy, (Tr). The indices can be instantiated according to the table in Figure 2.

3 Intransitive Information Flow

Transitive flow policies, like the ones discussed in Example 1, are very restrictive.
If F+ P is required for two domains F' and P then absolutely no information
must flow from F' to P. However, in practical applications it is often necessary to
allow exceptions to such restrictions. Exceptions can be described by intransitive
flow policies like FP3 (cf. Figure 2). In FP3, F+ P only requires that there
is no information flow from F' directly to P. Although direct information flow
is forbidden, information flow via the domain L is permitted. Thus, F' ~y L
and L~»y P provide an exception to the requirement F' -4 P. Events in F' may
become deducible for P if they are followed by events in L. An application for
FP3 could be a system which consists of a printer (domain P), a labeller (L)
and a file system (F'). In FP3, F+» P, F~»y L, and L~y P ensure that all
files must be labelled before being printed. Note, that such a requirement could
not be properly formalized with a transitive flow policy.

Unfortunately, intransitive flow policies have been outside the scope of defi-
nitions of information flow for non-deterministic systems. This includes the def-
initions investigated in [Sut86,McC87,JT88,0°H90,WJ90,McL96,Z1.97] and also

Information Flow Control and Applications 161

the BSPs which we discussed in Section 2.3 of this article. To the best of our
knowledge, intransitive flow policies are outside the scope of all definitions of
information flow which have been previously proposed for non-deterministic sys-
tems. The underlying problem is that these definitions cannot deal with excep-
tions. If a flow policy (like F'P3) requires F'+ P then these definitions require
that there is no information flow from F to P (without exceptions).

In Section 3.1 we present further applications in which intransitive informa-
tion flow is required. We illustrate the problems of previously proposed defini-
tions of information flow with intransitive flow policies in Section 3.2 at the ex-
ample of BSD. For one application we derive a specialized solution in Section 3.3
and then integrate a generalized solution into our assembly kit in Section 3.4.
This allows us to represent BSPs which can cope with intransitive flow in the
same uniform way as other BSPs. We evaluate our approach in Section 3.5.

3.1 More Applications of Intransitive Information Flow

Before we discuss the existing problems with intransitive flow policies we want to
emphasize their practical importance by presenting typical applications for which
intransitive information flow is necessary. The example of the printer /labeller /file
system has already been investigated at the beginning of this section.

Another application is a communication component for connecting a system
which contains classified data to an open network. In the component, a red side
which has direct access to classified data and a black side which is connected
to an open network are distinguished. Before a message which contains classi-
fied data may be passed from the red to the black side, the message body must
be encrypted. The message header, however, may be transmitted in plaintext.
This is expressed by the flow policy F'P4 (cf. Figure 3). Events which involve
the protected system are assigned domain R (red), events which model encryp-
tion domain CR (crypto), events which involve passing the header information
domain BP (bypass), and events which involve the open network domain B
(black). FP4 is an intransitive flow policy because the domains BP and CR
provide exceptions to the requirement R+ B.

Another application which requires an intransitive flow policy results from a
modification of the three-level file system in Example 1. According to policy F' P2
the classification of data cannot be lowered. However, the need to protect the
confidentiality of data may disappear over time. For example, in order to execute

FP4

@Y\
ee

GO

Fig. 3. More example flow policies (76> and reflexive subrelation of ~»y omitted)

162 H. Mantel

a plan for a top secret mission, usually orders must be passed to people with
lower clearance. Each of these orders reveals information about the mission plan.
However, until the decision to execute the mission has been made no information
about the corresponding mission plan must be revealed. This can be regarded
as an example of downgrading. Policy FP5 in Figure 3 extends the policy F P2
for a three-level file system by two additional domains DT'S and DSU. These
domains allow for the downgrading of information from top secret to secret
(domain DT'S) and from secret to unclassified (DSU).

3.2 The Problem

In order to illustrate the problems which are caused by intransitive policies, we
use the printer /labeller /file system as a running example. Let ES = (E, I, O, Tr)
be the specification of such a system and F'P3 (cf. Figure 2) be the flow policy
which shall be enforced. Hence, files may only be passed to the printer if they
have been labelled before. As definition of information flow we investigate BSD.
If we pretend that intransitive flow policies could be handled like transitive
ones then we had to prove BSDy,(Tr), BSDy, (Tr), and BSDy,(Tr) (according
to Definition 5). The view of the printer illustrates the problems with intransi-
tivity. For this view we have to prove BSDy,(Tr), i.e.
Va,B e E*Nfe F((B.fae TrAalr=() = B.ae Ir). (1)
This requirement is too strong as the following example illustrates. Let write(f, d)
denote an event in which the contents of file f is replaced by data d, label(f, d,ld)

denote an event in which the contents d of file f is labelled with result Id, and
print(ld) denote an event in which the data Id is sent to the printer. Then

write(f1, di)-write(f1, d2)-label(f1, do,lab(d)).print(lab(dz)) (2)

is a possible trace of the system. We assign domains by dom(write(_,.)) = F,
dom(label(_, _,-)) = L, and dom(print(_)) = P. Thus, BSDy,(Tr) requires

write(f1, di).label(f1, d2,lab(dy)).print(lab(dy)) € Tr. (3)

The conclusion is (with d; # d») that the labeller must not depend on any
changes to the contents of files but rather has to invent the data which it labels.
This restriction is caused by the use of BSD and not by the flow policy according
to which F' ~»y L holds. In any sensible implementation of such a system the
labeller would depend on the file system and, thus, the implementation would
be rejected by BSD as being insecure, even if it intuitively respects F'P3. Hence
BSD is incompatible with the intransitive flow in policy F'P3.

This example points to a general problem which is neither a peculiarity of
BSD nor of this particular example. All previously proposed definitions of infor-
mation flow for non-deterministic systems exclude intransitive information flow.
Any system with intransitive flow would be rejected by these definitions as be-
ing insecure, even if it intuitively complies with the respective (intransitive) flow
policy. This incompatibility has made it impossible to apply information flow
control to non-deterministic systems when intransitive policies shall be enforced.
However, intransitive flow is required by many applications (cf. the examples in
Section 3.1). Thus, a limitation to transitive flow policies would be rather severe.

Information Flow Control and Applications 163

3.3 Towards a Solution

What is the reason for this problem? Let us revisit the printer/labeller/file sys-
tem in which, according to F'P3, events from domain F' may become deducible
through events from domain L. However, BSDy, (cf. formula (1)) requires that
deleting the last event with domain F' from a trace must again yield a trace,
no matter whether an event with domain L occurs or not. This is the reason
why BSD is too restrictive for intransitive flow policies. Formally this problem
is caused by the assumption a|p =() in formula (1). Thus, the first step towards
a solution is to replace it by the stronger assumption a|pur =(). This results in

Vo, € E*Nf e F.((B.f.a € Tr Na|lpur =) = B.a € Tr) . (4)

This modification of BSDy, requires that deleting events with domain F' must
yield a trace only if these events are not followed by any events with domain L,
e.g. deleting write(f1, d2) from trace (2) need not yield a trace. This precisely
reflects the requirements of the flow policy F'P3. According to F'P3, events in
domain F' may be deduced by domain P if they are followed by events in domain
L. Thus, events in L extend the view of P.

We now generalize this idea to arbitrary flow policies and define the notion of
an extension set. For a given domain D, the extension set Xp contains all events
which are visible to D and which possibly extend the view of D. Formally, Xp
is defined by Xp = |J{D' € D | D' ~v, DA D' # D}. Generalizing formula (4)
to an arbitrary view V = (V, N, C) and extension set X results in

Va,p € E*Nce C.((B.ca€ TrAa|locux = ()

= 3o’ € E*.(d|lv = aly Ad/|cux = () AB.o € Tr)). (5)
If XN N =0 (which will hold in this article) then formula (5) is weaker than
BSDy,(Tr). In fact, it is too weak as we will now illustrate at the flow policy F'P6
in Figure 3 (The problem does not occur with F'P3.). Let a, b, ¢, d be events
respectively with domain A, B, C, D, and Tr = {{), d, b, d.b, d.b.a} be a set of
traces. According to Tr, a is only enabled if d.b has previously occurred. Thus, an
observer with view A can conclude from the observation a that d has occurred.
Such deductions result in information flow from D to A through B which does
not comply with the policy (D + A, D + B). Intuitively, Tr violates F'P6.
Nevertheless, formula (5) is fulfilled for each of the views Va, Vg, Vo, Vp and
the extension sets X 4, Xp, X¢, and Xp. The reason is that the assumptions
of formula (5) are not fulfilled for a trace which contains an event z € X which
is not followed by any events from C. Thus, formula (5) enforces no restrictions
for such a trace. However, rather than making no restrictions, it should enforce
FPT7 (cf. Fig. 3) for such traces which compared to FP6 additionally permits
information flow from C' to A. Note that information flow from D to A is not
permitted by FP7. FP7 results from F'P6 by combining the views of A and B.

Consequently, BSPs should be enforced for a larger set of views. Addi-
tional views result from the combination of domains. Such combinations are
constructed along ~»y, e.g. AB denotes the combination of A and B in FP6
which we discussed above. Other combinations are BC, CD, ABC, BCD, and
ABCD. The resulting views which must be investigated for F'P6 are depicted

164 H. Mantel

in Figure 4. Note that there are six additional views, Vag, VB¢, Vob, VaBco,
VBep, and Vapop which are not contained in the basic scene. We will refer to
the extension of basic scenes by these views as scene.

3.4 A Solution

The solution for intransitive information flow which we have derived for our run-
ning example can now be generalized to arbitrary systems and flow policies. The
example showed that definitions of information flow like the basic security pred-
icate BSD rule out intransitive flow. In order to be able to cope with intransitive
policies in formula (5) we had to introduce the extension set X as additional
parameter. We now present two novel BSPs: IBSD (intransitive backwards strict
deletion of confidential events) and IBSIA (intransitive backwards strict insertion
of admissible confidential events) which are respectively derived from BSD and
BSIA but which are compatible with intransitive flow. Let V = (V, N, C).

IBSDX (Tr) =Va,B € E*Nce C.((B.c.a € Tr Aalcux =)
= 3o/ € E*.(d|lv = a|ly A |cux = () AB.o/ € Tr))

IBSIAS (Tr) =Va, 8 € E*Nce C.((B.a € Tr Aalcux = () AB.c € Tr)
= 3o/ € E*.(d'|lv = a|ly AN |cux = () AB.ca' € Tr))

Apparently, IBSD and IBSIA are very similar respectively to BSD and BSIA.
The only differences are that a|c = () is replaced by a|cux = () and &'|c = ()
by &'|cux = (). We now state some simple facts about the validity of these new
BSPs and relate them to the existing ones.

Fact 1. Let V = (V,N,C) be a view and X C E.

1. IBSDY(Tr) [IBSIAY(Tr)] if and only if BSDy(Tr) [BSIAy(Tr)]
2. If IBSDY(Tr) [IBSIAY(Tr)] and X CV then IBSDY (Tr) [IBSIAss (Tr)].
3. IBSDY o(Tr) and IBSIAT y o(Tr) hold.

For intransitive policies it does not suffice to investigate the views of single
domains. Rather the views of combinations of domains along ~»y must be con-
sidered as well. The need for the investigation of such views arises from the fact
that events which are not deducible for a given domain can become deducible if
they are followed by certain other events. E.g. in F'P6, which we discussed at the

|A |B | |D |AB |BC |CD |ABC |BCD |ABCD |
V (|AuB|BuC|CuD|D AuBuUC|BuCuD|CuD|AuBuC|BuCuD|AuBuCuD
N[O @ |0 |0 [} [} [} [} [} [}
C |(|CuD|AuD|AuB|AuBuC||D A AuB |0 A 0
X[¢ |p o lc o o [p [0 0 |

Fig. 4. Basic scene and scene for F'P6

Information Flow Control and Applications 165

end of the previous subsection, events in C' may become deducible for A if they
are followed by events in B. Events in D may also become deducible for A but
this requires that they are followed by events in C' and events in B. The following
definition expresses which combinations of domains must be considered.

Definition 6. Let FP = (D,~y,~n,%) be a flow policy. The set of combined
domains Cpp C P(D) for FP is the minimal set which is closed under

1. If D € D then {D} € Cpp and
2. if D' € Cpp, D € D, and 3D' € D'.D ~»y D' then D' U {D} € Cpp.

For intransitive policies, extended views must be considered. An extended view
X is a pair (V,X) consisting of a view V and a set X of events, the extension
set. Since extended views for combined domains must be considered, we define
the extended view for sets D' of domains rather than for single domains.

Definition 7. The extended view Xp: = ((V, N,C), X) for D' CD is defined by

V ={e€ E|3D' € D'.dom(e) ~v D'}

N ={e€ E|AD' € D'.dom(e) ~y D' AID' € D'.dom(e) ~n D'}
C={e€ E|VD' € D'.dom(e) D'}
X=|{DeD|3D' €D .D~y D'AD¢D'}

The scene Spp for FP contains the extended view X for each D' € Cpp.
We now state some facts about scenes which directly follow from Definition 7.
Fact 2. Let V = (V,N,C) be a view and X C E.

1. If(V,X) e Spp then X C V.
2. If FP is transitive then (V,X) € Spp = (V,0) € Spp.

We now define when a security property with an arbitrary flow policy is satisfied.

Definition 8. Let ISP&" = IBSPé(’l/\. . ./\IBSPé(’" be an intransitive security
predicate and FP be a flow policy. An event system ES satisfies (ISP, FP) iff
IBSP{;("(TT) holds for each i € {1,...,n} and for each X in the scene Spp.

Definition 5 stated when an event system satisfies a given security property
with a transitive flow policy. Clearly, Definition 5 and Definition 8 should be
equivalent for the special case of transitive flow policies. The following theorem
ensures that this, indeed, holds for IBSD and IBSIA.

Theorem 1. Let FP be a transitive flow policy.

1. BSDy(Tr) holds for each view V in the basic scene BSpp if and only if
IBSD;Y (Tr) holds for each extended view (V,X) in the scene Sgp.

2. BSIAy(Tr) holds for each view V in the basic scene BSgp if and only if
IBSIAS (Tr) holds for each extended view (V,X) in the scene Spp.

166 H. Mantel

Proof. We prove the first proposition. The second can be proved analogously.
=) Assume that BSDy(Tr) holds for each V € BSpp. With Fact 1.1 we
receive IBSDY(Tr). Fact 1.2 implies IBSD{Y (Tr) for all X C V4. From Fact 2.1
we conclude that IBSD{ (Tr) holds for all (V,X) € Sgp.
<) Assume that IBSDf (Tr) holds for each (V,X) € Spp. Fact 2.2 implies
that if IBSD;X (Tr) then IBSDY(Tr). From Fact 1.1 we conclude that BSDy(Tr)
holds for each V € BS pp. O

3.5 The Solution Revisited

Theorem 1 demonstrates that IBSD and IBSIA are, respectively, extensions of
BSD and BSIA to the intransitive case. For the special case of transitive flow
policies the corresponding BSPs are equivalent. However, in the intransitive case
the new BSPs are less restrictive. E.g. IBSD accepts systems with intransitive
flow as secure wrt. a given (intransitive) flow policy if they intuitively comply
with this policy while BSD rejects any system with intransitive flow as insecure.
It remains to be shown that IBSD (and IBSIA) rejects systems with intransitive
flows as insecure if they intuitively violate the (intransitive) policy under con-
sideration. We demonstrate this by several examples. Note that a formal proof
of such a statement is impossible since the point of reference is our intuition.

We use the 3-level file system with 2 downgraders from Section 3.1 and
flow policy FP5 from Figure 3 as running example. For each case, which we
investigate, we assume that the system is intuitively insecure in a certain sense
and then argue that IBSD indeed rejects the system as insecure.
Example 3. Let us first assume that downgrading events never occur. Thus there
should not be any intransitive information flow in the system even though the
flow policy is intransitive. Moreover, assume that domain U can deduce that
events from T have occurred. Thus, the system is intuitively insecure. However,
since events from DSU U DTS do not occur in traces, IBSD enforces the same
restrictions (for the extended views Xrsy, Xsu, Xy in Srps) as BSD does for
the views Vr, Vg, Vy in the basic scene of FP2. Thus, IBSD rejects such a
system as insecure wrt. F'P5 because BSD would reject the system for F'P2.

Let us next assume that only downgrading events in DSU never occur. Thus,
there should not be any information flow from 7" or S to U and information may
flow from T to S only via DTS. Firstly, assume that the system is intuitively
insecure because U can deduce the occurrence of events from TUS. IBSD rejects
such a system as insecure. The reason is that BSD would reject such a system
for the (transitive) flow policy which is defined by U~y S, U~y DTS, U~y T,
S’\»V DTS, S'\’)V T, DTS’\#V S, DTS'\/)V T, T’\»V S, T'\/)V DTS, S')L) U,
DTS+ U, and T+ U. Secondly, assume that the system is intuitively insecure
because S can deduce the occurrence of events from 7' which are not followed by
any events from DT'S. Thus, there must be a sequence f.t.a € Tr with t € T,
a|prsur = () such that 8. ¢ Tr. However, this would violate IBSDx for the
extended view X = (DTSUSUDSUUU,®,T),DTS).

Let us now assume that no downgrading events in DTS occur. If such a
system is intuitively insecure then it is rejected by IBSD as insecure. The argu-
ment can be carried out along the same lines as in the previously discussed case

Information Flow Control and Applications 167

where no events in DSU occurred. The case which remains to be discussed is
the general case in which events from all domains may occur. In this case more
kinds of (intuitive) insecurity must be investigated. However, for each of these
insecurities one can argue along the same lines as before that IBSD correctly
rejects any corresponding (intuitively insecure) system.

4 Verification Conditions

Unwinding conditions simplify the proof that a system satisfies a given security
property. While BSPs like IBSD or IBSIA are expressed in terms of sequences
of events, unwinding conditions are stated in terms of the pre- and postcondi-
tions of single events. In [Man00b], we have presented such unwinding conditions
for a large class of BSPs which can be applied for transitive flow policies. By
an unwinding theorem we have guaranteed that these unwinding conditions are
correct. The development of unwinding conditions for IBSD and IBSIA along
the same lines is a straightforward task. However, in general, the unwinding
conditions must be proved for all combinations of domains (cf. Definition 6)
rather than only for single domains (as in [Man00b]). Interestingly, this can be
optimized for the special case of flow policies with ~» y= . In this section we
demonstrate that it suffices for such policies to prove the unwinding conditions
for single domains only, thus, reducing the verification burden considerably.

In order to express unwinding conditions we use state-event systems (cf. Def-
inition 2) and make the same assumptions as in [Man0O0b], i.e. there is only one
initial state sy and the effect of events is deterministic (the transition relation T
is functional). However, state-event systems are still non-deterministic because
of the choice between different events and since internal events may cause effects.

The successor setfor s1 €S and e € E is succ(s1,e) = {s2€ S | (s1,€,82) € T'}.
According to our simplification, succ(s1, e) has at most one element. We extend
succ to sets S; C S of states and sequences a € E* of events:

succ(S1, @) = if a = () then Syelse let e.o' = a in succ({J,cg, succ(s,e),a’) .

A sequence a of events is enabled, denoted by enabled(a, s), in a state s if and
only if succ(s,a) # 0. A state s is reachable, denoted by reachable(s), if and only
if there is a sequence a of events such that s € succ(sr, @).

Our unwinding conditions are based on preorders (unlike most other ap-
proaches which are based on equivalence relations, e.g. [RS99]). For a discussion
of the advantage of using preorders we refer to [Man00b]. A domain possibility
preorder for a domain D € D is a reflexive and transitive relation xp, C S x S.
Our intuition is that s; X p sy should imply that every D-observation which is
possible in s; should also be possible in s3. We now construct a relation Cpr
with a corresponding idea for combined domains, i.e. s Epr so should imply
that every D’'-observation which is possible in s; should also be possible in ss.

Definition 9. Let D' C D be a set of domains and (Xp)pep be a family of
domain possibility preorders on S. We define a relation Cp:C S x S by

$1 Cpr 89 =VD €D'.s1 Xp ss .

168 H. Mantel

Each of our unwinding conditions woscp, Irfp, and lrbp is defined in terms of
single events. woscp (weak output step consistency) demands that s; Xp s
implies that any event ¢ € D which is enabled in s; is also enabled in sj.
Moreover, if s1 Xp 87, 81 X gom(e) 81, and an event e € E is enabled in s; then
e is also enabled in s} and the preorder is preserved after the occurrence of e,
i.e. s2 xp s holds for the successor states. If an event e € E is enabled in a
state s with resulting state s’ then s' X p s is required for all domains D with
dom(e) + D by Irfp (locally respects forwards). Similarly, Irbp (locally respects
backwards) requires s Xp s'.

woscp : Vs, 82,5) € SVe € E.((s1 Xxp sy A (s1,€,82) €T A 51 X gom(e) 51)
= Jsh € S.(sh € succ(s),e) A sy Xp sh)
Irfp: Vs,s'€ SVe € E.((dom(e) + D A reachable(s) A (s,e,s') € T) = s'Xp s)
Irbp: Vs € SVe € E.((dom(e) % D A reachable(s) A enabled(e, s))
= (3s' € S.(s,e,s') e TAsxps'))

The following lemma, shows that x p and Cpr respectively are orderings on D-
and D’-observations of arbitrary length when woscp holds for all D € D.

Lemma 1. If SES fulfills woscp for xp for all D € D then

Vs1,s1 € SYD' C DNa € (Upep D)*-((s1 Cpr 51 A enabled(a, 51))
= s, € succ(s1,a), s, € suce(sy,a).sp Epr sh).

Proof. We prove the lemma by induction on the length of a. In the base case,
i.e. for a = (), the proposition holds trivially. In the step case, i.e. for a@ = e;.a/,
we assume s1 Cp 8§ and enabled(a, s1). Thus, there is a state sy € succ(s1,e1)
with enabled(a’, 52). Let D € D' be arbitrary. s; X p s, (51,€,82) € T, 51 X gom(e)
s, and woscp imply that there is a s, € S with (s},e,s}) € T and s2 Xp sh.
Since D is arbitrary, we receive sa Cpr sy. s2 Cpr s, enabled(a’, s2), and the
induction hypothesis imply the lemma. O

Theorem 2 (Unwinding Theorem). Let FP be a security policy with a finite
set D of disjoint domains and ~n= 0.

1. ¥D € D.(woscp A lrfp) = ¥D' € Cpp.IBSDy,™ (Tr)
2. ¥D € D.(woscp A lrbp) = VD' € Cpp.IBSIA},™ (Tr)

Proof. We prove the first proposition. The second can be proved analogously.
Let D' € Cpp and Xp = ((V,N,(C),X). Let B.c.a € Tr be arbitrary with
¢ € C and a|oux = (). We have to show that S.a € Tr holds. f.c.a € Tr
implies that there are states s1,s9 € S with s; € suce(sy, 8), (s1,¢,82) € T, and
enabled(a, s2). We choose D' € D' arbitrarily. dom(c) + D' because of ¢ € C
(cf. Definition 7). From Irf,, we conclude s X pr s1. This implies so Cpr 81
because D' was chosen arbitrarily. Finally, Lemma 1 implies that enabled(c, s1),
ie. B.a € Tr. O

Information Flow Control and Applications 169

The unwinding theorem ensures that a proof of the unwinding conditions implies
that the flow policy is respected, i.e. the unwinding conditions are correct. Inter-
estingly, it suffices to prove the unwinding conditions for single domains (rather
than for combined domains) for policies with ~»y= 0. In order to show that
the unwinding conditions are not too restrictive a completeness result would be
desirable. In the transitive case such a completeness result can be achieved if
~ = 0 holds (cf. [Man0O0b]). For the intransitive case no general completeness
result holds unless one makes the additional (quite artificial) assumption that
different sequences of events always result in different states. However, we plan
to investigate these issues more closely in future research.

5 Related Work

The approach to information flow control in non-deterministic systems which we
have proposed in this article is compatible with intransitive information flow. All
previously proposed approaches are either restricted to deterministic systems or
cannot cope with intransitive information flow.

Information flow control based on non-interference was first introduced by
Goguen and Meseguer in [GM82]. This original version of non-interference was
incompatible with intransitive information flow. In order to overcome this short-
coming for channel control policies, a special case of intransitive flow policies,
an unless construct was introduced in [GM84]. However, this unless construct
did not capture the intuition of intransitive flow. It accepted many intuitively
insecure systems as being secure. This weakness of the unless construct has some
similarities to the weakness which would result from using basic scenes (rather
than scenes) together with IBSD and IBSIA in our approach (cf. Section 3.3).
The first satisfactory formal account of intransitive information flow was pro-
posed by Rushby [Rus92]. The key for the compatibility with intransitive flow
in his solution was the use of an ipurge function instead of the traditional purge
function. A similar notion of non-interference was proposed by Pinsky [Pin95].
All work discussed so far in this section uses deterministic state machines as
system model and, thus, is not directly applicable to non-deterministic systems.
Another approach (based on determinism in CSP) which is more restrictive than
Rushby’s approach has been proposed by Roscoe and Goldsmith [RG99]. It de-
tects some insecurities which are not detected by Rushby’s approach but, since
it is based on determinism, an extension to distributed systems will be difficult.

The first generalization of non-interference to non-deterministic systems was
non-deducibility as proposed by Sutherland [Sut86]. Subsequently, various other
generalizations (e.g. [McC87,0’'H90,McL96,ZL97]) have been proposed and there
seems not to be one single optimal generalization of non-interference for non-
deterministic systems. To our knowledge, none of these generalizations can cope
with intransitive information flow. The system models underlying the different
approaches are either state based, like non-deterministic state machines, or event
based, like event systems or the process algebras CSP or CCS. The various event
based models differ in which specifications they consider as semantically equiv-
alent. While event systems use trace semantics, i.e. specifications are equivalent
if they describe the same set of traces, CSP uses failure divergence semantics

170 H. Mantel

(early versions used trace semantics), and CCS uses weak bisimulation. Trace
semantics identify more specifications than failure divergence or weak bisimula-
tion semantics, however, none of these semantics is in general superior to one
of the others. For an overview on these and other semantics we refer to [vG90,
Sch00].

Today, Rushby’s approach to information flow control with intransitive poli-
cies seems to be the most popular one for deterministic systems. It is feasible for
real applications as has been demonstrated by case studies like [SRS*00]. How-
ever, Roscoe and Goldsmith [RG99] recently identified a shortcoming of Rushby’s
solution which we explain at the example of the flow policy FP5 (cf. Figure 3).
Let us assume that the file system has two files f;; and f;2 which are both as-
signed the security domain 7" and that there are two downgrading events dts;
and dtse with domain DTS which should respectively downgrade information
only about either f;; or fi;2. Note, however, that no such requirement is expressed
in F'P5. Consequently, certain insecurities, e.g that dts; downgrades information
about f;; as well as fi2, cannot be detected by applying Rushby’s intransitive
non-interference. Roscoe and Goldsmith argued that this would be a shortcom-
ing of Rushby’s definition of information flow. However, we do not fully agree
with this critique (although it points to an important problem) because it does
not identify a problem which is specific to this definition of information flow.
Either a security requirement can be expressed by a flow policy (e.g. by assign-
ing different domains T'1 and T2 respectively to f;1 and fi2) or the concept of
flow policies alone is not adequate and, hence should be combined with some
other concept which further restricts possible downgrading of information. In
the first case, Rushby’s intransitive non-interference can be applied but, in the
second case, flow policies are insufficient, in general. Intransitive flow policies re-
strict where downgrading can occur but do not allow further restrictions on what
may be downgraded. How to specify good downgrading is an important question
which, however, is unresolved for deterministic as well as for non-deterministic
systems. In our opinion the contribution of [Rus92] has been to allow information
flow control to be applied for restricting where downgrading can occur.

Unwinding conditions for information flow control (in the intransitive case)
have been proposed by Rushby [Rus92] and Pinsky [Pin95]. While Rushby’s un-
winding conditions are based on equivalence relations, Pinsky’s unwinding con-
ditions are based on equivalence classes (8-families in his terminology). Both au-
thors proved unwinding theorems which ensure the correctness of their unwind-
ing conditions and also present completeness results. However, the completeness
results are limited to the special case of transitive policies (in [Pin95] this restric-
tion results from the assumption SA (basis,(z),a) C view(state_action(z,)) in
the proof of the corollary on page 110).

6 Conclusion

When using information flow control in real applications it is often necessary
to allow for certain exceptions to the restrictions of information flow. Such ex-
ception can be expressed by intransitive flow policies. The incompatibility of all
previously proposed approaches for information flow control in non-deterministic

Information Flow Control and Applications 171

systems with intransitive policies created a major gap which has prevented the
migration of research results on information flow control into practice. In this
article, we have constructed a bridge over this gap by proposing an approach to
information flow control which is compatible with intransitive flow and which
can be applied to non-deterministic systems. We have argued that our approach
only accepts systems as secure if they are intuitively secure wrt. a given flow
policy (cf. Section 3.5). Thus, the same kind of insecurities are detected as in
Rushby’s approach for deterministic systems. Consequently, our approach also
suffers from the limitations identified in [RG99]. However, these are limitations
of flow policies in general (cf. Section 5). Although the properties of our solution
are similar to the ones of Rushby’s solution, our formalization differs consid-
erably. This is a necessary difference because our work is based on a different
system model, i.e. event systems, which is compatible with non-determinism
while Rushby’s state machines are deterministic.

We have integrated our approach to information flow control for intransitive
flow policies into our previously proposed assembly kit [Man00a]. To us it was
very appealing that this did not require major changes to the assembly kit but
only the definition of novel BSPs. The unwinding conditions we have presented
are also similar to the ones for the transitive case [Man00b]. We are confident
that the presented approach provides a suitable basis for applying information
flow control to distributed systems. Our approach is the first proposal which
can be used for such systems in the context of intransitive information flow.
However, we neither claim that this is the only solution nor that it is the optimal
one. In order to improve this solution further research will be useful which, in
our opinion, should be driven by experiences from case studies. We plan to
experiment with our approach in case studies in future work.

Acknowledgments. This work benefited from discussions with Dieter Hutter
and Axel Schairer. The author would like to thank Serge Autexier and Alexandra
Heidger for many valuable comments on the presentation.

References

[FM99] Riccardo Focardi and Fabio Martinelli. A Uniform Approach to the Definition
of Security Properties. In FM’99 — Formal Methods (vol. 1), LNCS 1708,
pages 794-813. Springer, 1999.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 11-20,
Oakland, CA, April 26-28 1982.

[GM84] J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 75-86, Oakland,
CA, April 29-May 2 1984.

[JT88] Dale M. Johnson and F. Javier Thayer. Security and the Composition of
Machines. In Proceedings of the Computer Security Foundations Workshop,
pages 72-89, Franconia, NH, June 1988.

[Man00a] Heiko Mantel. Possibilistic Definitions of Security — An Assembly Kit — In
Proceedings of the IEEE Computer Security Foundations Workshop, pages
185-199, Cambridge, UK, July 3-5 2000. IEEE Computer Society.

172

H. Mantel

[Man00b] Heiko Mantel. Unwinding Possibilistic Security Properties. In European

[McC87]

[McL96]

[O’HO0]

[Pin95]

[RG99)]

[RS99]

[Rus92]

[Sch00]

Symposium on Research in Computer Security (ESORICS), pages 238-254,
LNCS 1895, Toulouse, France, October 4-6 2000. Springer.

Daryl McCullough. Specifications for Multi-Level Security and a Hook-Up
Property. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 161-166, Oakland, CA, April 27-29 1987.

John McLean. A General Theory of Composition for a Class of ” Possibilistic”
Security Properties. IEEE Transaction on Software Engineering, 22(1):53—
67, January 1996.

Colin O’Halloran. A Calculus of Information Flow. In Proceedings of the
European Symposium on Research in Computer Security (ESORICS), pages
147-159, Toulouse, France, October 24-26 1990.

Sylvan Pinsky. Absorbing Covers and Intransitive Non-Interference. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 102-113,
Oakland, CA, May 8-10 1995.

AW. Roscoe and M.H. Goldsmith. What is intransitive noninterference?
In Proceedings of the 12th IEEE Computer Security Foundations Workshop,
pages 228-238, Mordano, Italy, June 28-30 1999.

P.Y.A. Ryan and S.A. Schneider. Process Algebra and Non-interference.
In Proceedings of the 12th IEEE Computer Security Foundations Workshop,
pages 214-227, Mordano, Italy, June 28-30 1999.

John Rushby. Noninterference, Transitivity, and Channel-Control Security
Policies. Technical Report CSL-92-02, SRI International, 1992.

Steve Schneider. Concurrent and real-time systems : the CSP approach. John
Wiley, Chichester, England ; New York, 2000.

[SRS*00] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll.

[Sut86]

[vG90]

[WJ90]

[ZL97]

Verification of a Formal Security Model for Multiapplicative Smart Cards. In
European Symposium on Research in Computer Security (ESORICS), pages
17-36, LNCS 1895, Toulouse, France, October 4-6 2000. Springer.

D. Sutherland. A Model of Information. In 9th National Computer Security
Conference, September 1986.

R.J. van Glabbeek. The Linear Time — Branching Time Spectrum. In Pro-
ceedings of CONCUR’90, Theories of Concurrency: Unification and Exten-
stons, pages 278-297, LNCS 458. Springer, 1990.

J. Todd Wittbold and Dale M. Johnson. Information Flow in Nondeterminis-
tic Systems. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 144-161, Oakland, CA, May 1990.

Aris Zakinthinos and E.S. Lee. A General Theory of Security Properties. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 94-102,
Oakland, CA, May 4-7 1997.

