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Abstract

In a stepwise development process, it is essential that
system properties that have been already investigated in
some phase need not be re-investigated in later phases. In
formal developments, this corresponds to the requirement
that properties are preserved under refinement. While safety
and liveness properties are indeed preserved under most
standard forms of refinement, it is well known that this is,
in general, not true for information flow properties, a large
and useful class of security properties. In this article, we
propose a collection of refinement operators as a solution
to this problem. We prove that these operators preserve in-
formation flow as well as other system properties. Thus,
information flow properties become compatible with step-
wise development. Moreover, we show that our operators
are an optimal solution.

1 Introduction

In a stepwise development process, abstraction and de-
composition are the main techniques that allow one to deal
with the high complexity of large systems. In such a pro-
cess, one usually starts with a very abstract specification of
the desired system. This specification is then refined and de-
composed until one arrives at a concrete specification that
can directly be implemented. Naturally, one expects that
a system which is developed formally in this way satisfies
all properties that are satisfied by the abstract specification
(plus possibly additional ones). While this holds for safety
and liveness properties, it is not true for most information
flow properties.

Information flow properties, however, provide a very ele-
gant approach to specify security requirements. In this pro-
cess, one first selects a set� of domains and then restricts
the allowed flow of information between domains by a re-
lation �� � � �� . For example,� �� � expresses that no
information shall flow from domain� to domain� . On the
one hand side, this statement can be interpreted as a con-

fidentiality requirement, i.e. that information in domain�
is hidden from domain� . On the other hand, it can be in-
terpreted as an integrity requirement, i.e. that� cannot be
corrupted by� . Thus, information flow properties can be
used to specify confidentiality as well as integrity require-
ments. Besides� and �� , the only other ingredient that is
required for information flow control is a formal definition
of what information flow means. While for deterministic
systems, non-interference [GM82] is widely accepted as the
right definition of information flow, different definitions of
information flow co-exist for non-deterministic systems.

Unfortunately, no satisfactory integration of informa-
tion flow properties into a stepwise development process
has been achieved so far. While many of these properties
behave nicely under composition (cf. e.g. [McC87, JT88,
WJ90, McL94]), the main problem is that they are, in gen-
eral, not preserved under refinement. This problem has al-
ready been discussed in [Jac89] and some progress towards
a solution has been made [GCS91, O’H92, RWW94]. How-
ever, to take information flow properties into account for
design decisions during a stepwise development process is
still infeasible because these properties would need to be
re-investigated from scratch in every step. Since this would
be too expensive, the only approach, that appears to be fea-
sible today, is to consider information flow properties only
at the very end of the development process when no further
refinement of the specification is necessary. Clearly, this is
a very poor approach because security is enforced after all
design decisions have already been made. Enforcing secu-
rity by preventing certain behaviours a posteriori may result
in a so useless system that the complete development effort
would be wasted.

In this article, we define conditions under that refine-
ment preserves safety and liveness as well as information
flow properties. Our main contribution is a collection of re-
finement operators that can be used not only for checking
if a given refinement preserves information flow properties
but also for constructing property preserving refinements.
Clearly, the advantage of our approach is that information
flow properties need only be proven once. They can be



taken into account during a stepwise development process
without reproving them at every step. Thus, information
flow properties become compatible with stepwise system
development. Moreover, we demonstrate that our refine-
ment operators provide an optimal solution to the problem.

This article is structured as follows: We introduce in-
formation flow control in Section 2 and refinement in Sec-
tion 3. The original contributions of this article are pre-
sented in Section 4, 5, and 6. In Section 4, the problem of
refining information flow properties is illustrated by a sim-
ple example before we present refinement operators for the
perfect security property, an information flow property pro-
posed in [ZL97]. We then prove that these operators pre-
serve functional system properties as well as the perfect se-
curity property. The optimality of our refinement operators
is discussed in Section 5. In Section 6, we generalize our
results and propose refinement operators for other informa-
tion flow properties. We conclude this article with a com-
parison to related work in Section 7 and a summary of our
results together with a list of open tasks for future research
in Section 8. All proofs are presented in the appendix.

2 Information Flow Properties

Information flow properties can be used to express con-
fidentiality and integrity requirements. Each information
flow property consists of two components: aflow policy
and adefinition of information flow. Such properties can be
specified independently of any particular system specifica-
tion. However, in order to refer to the underlying concepts
it is necessary to choose a model of computation. In this
article we useevent systems.

An event is an atomic action with no duration, like
e.g. sending or receiving a message on a communication
channel. We distinguishinput events, which cannot be
enforced by the system, frominternal and output events,
which are controlled by the system. However, we donot
make the restricting assumption that input events are al-
ways enabled. At the interface, input and output events can
be observed while internal events cannot. The possible be-
haviours of a system are modeled as traces, i.e. sequences
of events.

Definition 1. An event system� � is a tuple�� � � � � �Tr�
where� is a set of events,� � � � � respectively are the
input and output events, andTr � � � is the set of traces, i.e.
finite sequences over� . Tr must be closed under prefixes.

Example 1.The event system� � � 	 �� � � � � �Tr� � is the
running example in this article.� contains three events
�,

�, , andTr� contains all sequences in which each of these
events occurs at most once, e.g.
� � �
� � Tr� . The distinc-
tion of input, internal, and output events will be unimportant
in the sequel and, thus, we need not specify� and� .

2.1 Flow Policies

Flow policies specify restrictions on the information
flow within a system. They are defined with the help of a set
� of security domains. Typical domains are e.g. groups of
users, collections of files, or memory sections. We associate
a security domaindom��� � � to each event� � � .

Definition 2. A flow policy FPis a tuple�� �� � �� � � �� �
where� � �� � � �� � � �� form a disjoint partition of
� �� and� � is reflexive. FP is calledtransitive if � �
is transitive and, otherwise,intransitive. In this article, we
only consider transitive flow policies.

�� is the non-interference relationof FP and �� �� ��
expresses that there shall be no information flow from� �
to ��. Allowed information flow is specified by the two
relations� � and� � . � � � � � � expresses that events
in � � are visible for��. � � � � �� expresses that oc-
currences of events from� � are invisible for�� but that
we do not care if these occurrences can be deduced by�� .
Distinguishing between�� , � � , and� � results in more
flexibility compared to having only two relations�� and� .
However, for the moment, the reader can safely ignore the
relation� � because, with the exception of Section 6, we
will assume� � 	 �.

Example 2.The2-level flow policy� �� has two domains,
a low-level� and a high-level� , i.e. � 	 �� �� �. The
relations are defined by� � � �, � � � � , � � � � ,
and� �� �, thus, there shall be no information flow from
the high- to the low-level. For� � � we assign domains as
follows: dom�
� � 	 dom�
� � 	 � anddom�� 	 � .

Notational Convention. We frequently use� to denote
the set of all events with domain� . E.g. for� � � we ob-
tain � 	 �
� � 
� � and� 	 ��. Theprojection� �� � of a
sequence� � � � to the events in� � � � results from�
by deleting all eventsnot in � �, e.g. 
� � �
� �� 	 
� �
� and

� � �
� �� 	 . The empty sequence is denoted by !.

2.2 Definitions of Information Flow

In order to state precisely under which conditions a sys-
tem satisfies the restrictions described by a flow policy, it is
necessary to define formally what information flow means.
At least for non-deterministic systems, there is no agree-
ment on a single definition of information flow but rather
different definitions co-exist. Which of these definitions is
best cannot be answered in general but depends on the par-
ticular application under consideration. In order to simplify
their comparison, several frameworks have been proposed
in which the various definitions of information flow can be
uniformly represented [McL94, FG95, ZL97, Man00a].
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Usually, a definition of information flow is parametric
in the flow policy. In order to simplify the presentation
we use a fixed flow policy, the two-level flow policy� ��
from Example 2. Moreover, we focus on a single definition
of information flow, the so calledperfect security property
from [ZL97] (abbreviated byPSPin the sequel). How to
relax these assumptions will be discussed in Section 6.PSP
can be formally defined by

PSP�Tr� � �� �Tr ��� � � � � � �� � � �� �� �Tr� ��� 	 � �� �  �� � � �� 	  ! � � � �Tr�� � � �� �Tr�
Intuitively, PSP�Tr� ensures that an observer who knows the
specification of a system, i.e.Tr, and observes events with
domain� cannot deduce any information about occurrences
of events with domain� . This prevents a high-level Tro-
jan horse from transmitting information to low-level users.
When observing a behaviour

�
, a low-level user observes� �� . From this observation and the knowledge ofTr, he

cannot decide whether
�

or
� �� has occurred. This is en-

sured by the first conjunct in the definition ofPSP, which
demands that

� �� is a possible behaviour. Consequently,
the low-level user cannot deduce that any high-level events
haveoccurred. The second conjunct prevents a low-level
user to deduce that some admissible high-level event has
not occurred. All low-level observations� that are enabled
after a behaviour� (� �� � Tr) must also be enabled after
� � (� � �� � Tr) if  is enabled after� (� � � Tr). There-
fore, the low-level user cannot rule out the possibility that
 has occurred. By induction, this can be generalized to
arbitrary sequences of high-level events.

2.3 Unwinding Conditions

Defining information flow properties in terms of whole
traces (like in the definition ofPSPin the preceeding sub-
section) improves the understandability of these properties.
However, for proving them it is helpful to have more local
conditions, so calledunwinding conditions, which are for-
mulated in terms of single events. Clearly, it is desirable
to have two alternative representations, a global definition
as well as unwinding conditions together with anunwind-
ing theorem, which ensures that the unwinding conditions
imply the global definition.

For the definition of unwinding conditions it is necessary
to enrich event systems with states. With this enrichment
the pre-condition of an event� is the set of states in which
� can possibly occur. The post-condition is a function from
states to the set of possible states after the event has oc-
curred in the respective state. The notion of state is trans-
parent, however, note that information flow is only caused
by events and not by states.

lr� : osc� �	 �� :


� 
�


��


 �� � ��


� 
�

�

�
�� ��

where� � � and � � �
Figure 1. Unwinding conditions for PSP

Definition 3. A state-event system�� � is a quintuple
�� � � � � � � � � � � � � where� is a set of states,� � � � con-
tains the initial states,� is a set of events,� � � �� respec-
tively contain the input and output events, and� � �����
is a transition relation.

In this article, we assume that� � is a singleton set and
that the effect of events is deterministic, i.e. that� is
functional. Note that state-event systems are still non-
deterministic because of the non-determinism in the choice
of events. Ahistory of a state-event system�� � is a se-
quence�� ��� ��� � � � �� of states and events. The set of his-
tories Hist�� � � � � � ��� �� �� for �� � is defined in-
ductively as follows: if� � � � then � � Hist��� � �; if�� ��� ��� � � � �� � Hist��� � � and ��� � �� � ��� � � � � then�� ��� ��� � � � �� ��� ���� � � Hist��� � �. A state � � � is
reachable, denoted byreachable���, if there is a history�� ��� � � � � � Hist��� � � that ends in�. Each state-event
system�� � 	 �� � � � � � � � � � � � � can be translated into
a corresponding event system� ��� � 	 �� � � � � �Tr�� � �
where the set of tracesTr�� � � � � results fromHist��� � �
by deleting states from the histories.

Definition 4. An event system� � 	 �� � � � � �Tr� satisfies
PSP if and only if PSP�Tr� holds. A state-event system
�� � satisfies PSPif and only if PSP�Tr�� � � holds.

We now define two unwinding conditionslr� andosc� �	 �� .
In these conditions an equivalence relation�� � � �� , the
unwinding relation, is used.�� �� �� shall express that��
and �� cannot be distinguished by a low-level user, i.e. all
sequences of low-level events that are enabled in�� are also
enabled in�� , and vice versa. This is ensured byosc� �	 �� .
lr� demands that the states before and after the occurrence
of a high-level event are equivalent wrt.�� .

lr � � � �� � �� � � �� �� �
��reachable��� � � ��� �  � �� � � � � � �� �� �� �

osc� �	 �� � � �� � � �� � �� � � �� 
 � � � � �
��� �� � �� � ��� � 
 � �� � � � �� ��� �� � � ���� �� � 
 � � �� � � � � �� �� � �� ��

lr� and osc� �	 �� are equivalent to the commutativity re-
spectively of the diagrams depicted on the left and right
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Figure 2. Example transition relation
��

hand side in Figure 1. The parts of the diagrams which
are given are indicated by boldface. All other parts may be
chosen arbitrarily in order to make the diagrams commute.

Theorem 1 (Unwinding Theorem). If there is an equiva-
lence relation��� � � � for which �� � fulfills lr� and
osc� �	 �� then�� � also fulfills PSP.

Example 3.In order to prove that� � � satisfiesPSPwe
enrich � � � by states and obtain the state-event system
�� � � 	 �� � � � � � � � � � � � � � with � 	 ��� � � � � � �� �,
� � 	 ��� �, and the transition relation� � depicted in Fig-
ure 2. Let�� be the smallest equivalence relation with�� �� ��, �� �� �� , �� �� �� , and �� �� ��. With
these definitions it is easy to check that�� � � satisfieslr�
andosc� �	 �� for �� . Thus, according to Theorem 1,�� � �
(and� � �) fulfills PSP.

3 Specifications and Refinement

In this article we follow a semantic approach to the spec-
ification of systems. A system is specified by a specification
Specwhich defines its possible behaviours, i.e. a setTrSpec
of traces, plus some additional information. For event sys-
tems this additional information amounts to the set� of
events and the sets� and � . For state-event systems this
additionally includes a set� of states, a subset� � of initial
states, and a set of histories which results from an enrich-
ment of the traces by states. However, the results in this
article are not restricted to these two formalism but they can
be used with any specification formalism for which a map-
ping into event systems or state-event systems exists. This
includes process algebras like Hoare’s CSP [Hoa85].

3.1 Satisfaction of Properties

Alpern and Schneider [AS85] define a property� as a
predicate on traces.1 Alternatively, a property can be for-
malized as the set of all traces which satisfy� , i.e. Tr� 	

1To be precise, properties of [AS85] correspond to predicates on infi-
nite traces while in this paper they are predicates on tracesof finite length.

Spec� �

Spec	

satisfies

re
fin

es

sa
tis

fie
s?

Spec� PSP

Spec	

satisfies

re
fin

es

sa
tis

fie
s?

Figure 3. Preservation under refinement

�� � � � � � �� ��. A specificationSpecsatisfies� if
any behaviour that complies withSpecsatisfies� , i.e. if
TrSpec

� Tr� holds.

Definition 5. An event system� � 	 �� � � � � �Tr� satisfies
a property� if and only if Tr � Tr� . A state-event system
�� � satisfies a property� if and only if Tr�� � � Tr� .

Since traces are inductively defined in this article, they
are always of finite length. Thus, no liveness but only
safety properties will be considered. Note that informa-
tion flow propertiescannotbe expressed as predicates of
single traces. Rather they are closure conditions on sets of
traces [McL94]. Thus, the notion of satisfaction in Defini-
tion 4 differs from that in Definition 5.

3.2 Refinement

An abstract specificationSpec� is refinedby a specifica-
tion Spec	 if all behaviours allowed bySpec	 are also al-
lowed bySpec�, i.e. if TrSpec


� TrSpec� . Thus, refinement
corresponds to the removal of non-determinism. The under-
lying idea is that an abstract specification focuses onwhat
shall be achieved while the concrete specification is more
specific onhowto achieve this. The design decisions made
in Spec	 restrict the possible behaviours. This notion of re-
finement corresponds to the one investigated in [Jac89].

Definition 6. An event system� � 	 	 �� � � � � �Tr	 � re-
finesan event system� � � 	 �� � � � � �Tr� � if and only if
Tr	 �Tr�. A state-event system�� � 	 	 �� � � � � � � � � � � � 	 �
refinesa state-event system�� � � 	 �� � � � � � � � � � � � � � if
and only if� 	 � � �.

The main topic of this article is the preservation of prop-
erties under refinement. The problem for a property� in
the sense of [AS85] is depicted on the left hand side of Fig-
ure 3. Assuming thatSpec� satisfies� and thatSpec	 re-
finesSpec�, the question is ifSpec	 also satisfies� . That
this indeed holds is ensured by Theorem 2 below. The un-
derlying argument is based on the transitivity of� which
is used in Definition 5 as well as in Definition 6. Unfortu-
nately, this argument cannot be applied for information flow
properties likePSPbecause satisfaction of these properties
is not based on the subset relation (cf. Definition 4). This
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difference in the notion of satisfaction is indicated on the
right hand side of Figure 3 by double-lined arrows.

Theorem 2. If � � � satisfies a property� and� � 	 refines
� � � then� � 	 satisfies� . If �� � � satisfies� and�� � 	
refines�� � � then�� � 	 satisfies� .

4 Preserving Information Flow Properties

It is well known that information flow properties, like
PSP, are not preserved under refinement. In Section 4.1,
we first illustrate this problem by a simple example and then
identify the source of this problem. In Section 4.2, we intro-
duce refinement operators forPSPand prove that these op-
erators preserve not only properties in the sense of [AS85]
but alsoPSP. To which extent our operators are necessary
for this preservation is not discussed in the current section
but will be the topic of Section 5. Adaptations of the results
from this section for other information flow properties will
be presented in Section 6.

4.1 The Problem with Refinement

We now illustrate the problem of refining information
flow properties by a simple example. For this purpose recall
the state event system�� � � from Example 3 .

Example 4.The transition relation� � of �� � � (depicted
in Figure 2) allows all sequences in which each of
�, 
�,
and  occurs at most once. A very simple example for a
design decision would be to require a certain ordering of
these occurrences, e.g. that
� may only occur after
� or
 has already occurred. This results in the more concrete
event system�� � 	 	 �� � � � � � � � � � � � 	 �. � 	 is depicted
in Figure 4. The main difference of� 	 to � � is that
� is dis-
abled in state��. Consequently, state�� cannot be reached
any more and, thus, the events
� and can also be disabled
in �� . Clearly,�� � 	 is a refinement of�� � � (� 	 � � �)
and�� � � satisfiesPSP(cf. Example 3). However,�� � 	
does not fulfill PSP. A low-level user, who makes the obser-
vation 
� of �� � 	 can deduce that has occurred. This is
reflected by a violation of the first conjunct in the definition
of PSP(
� �� Tr	). Thus,PSP is, in general, not preserved
under refinement.

In the previous example,PSP is not preserved under re-
finement. Disabling��� � 
� � �� �, ��� �  � �� �, and ��� � 
� � �� �
leads to a specification which is not closed underPSP.
Clearly, such refinements must be ruled out in order to pre-
servePSP. The task therefore is to find restrictions to re-
finement which guarantee the preservation ofPSP. Accord-
ing to the diagram on the right hand side of Figure 3, the
information which could possibly provide a basis for such
restrictions includes the two specificationsSpec� andSpec	,

� 	 �� ��
��

�� ��
�� ��








� 
�


�


�


�

�

Figure 4. Example for an insecure refinement

the definition ofPSP, and the proof thatSpec� satisfiesPSP.
It will turn out that the proof of the satisfaction relation is,
for this purpose, the most useful piece of information. The
main idea is to reduce the problem of preservingPSPunder
refinement to the problem of preserving commutativity of
the diagrams from Figure 1. This approach can be applied
wheneverPSPis proved using the unwinding theorem.

4.2 Refinement Operators for PSP

Rather than presenting conditions which could just be
used tocheck if a given refinement preservesPSP, we
present operators which can be used torefinespecifications.
When these refinement operators are applied,PSPis pre-
served by construction and no further check is necessary.

In particular, we present two refinement operators:refine
andrefine. Each of these operators takes three arguments,
an event system�� � which shall be refined, a set� � �
� �� of state-event pairs which shall be disabled during the
refinement, an unwinding relation�� � � �� , and yields
a new, refined state-event system. Clearly, the goal is that
if �� � satisfiesPSP(or more precisely: if�� � satisfies
lr� andosc� �	 �� for ��) then the resulting state-event sys-
tem should also satisfyPSP. Simply disabling all pairs in
� � from �� � , however, might yield a system which does
not satisfyPSP(cf. Example 4). Therefore, an adaptation
is necessary in which eitheradditional events are disabled
or some state-event pairs in� � remain enabled. These
two approaches give rise to a difference betweenrefineand
refine. While refinedisables all pairs in� � (plus possibly
pairs not in� � ), refineonly disables pairs which are in� �
(but possibly not all pairs in� � ).

The formal definitions ofrefineandrefineare depicted in
Figure 5. These operators only have an impact on the tran-
sition relation. The new transition relation is constructed by
the functionsdisableanddisable. These functions handle
the high- and low-level events which shall be disabled sepa-
rately using the functionsHdisable, Ldisable, andLdisable.
This separation is motivated by the unwinding conditions
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refine��� � � � � ��� �
	 �� � � � � � � � � � �disable�� � � � ��� ��
refine��� � � � � ��� �
	 �� � � � � � � � � � �disable�� � � � ��� ��

disable�� � � � ��� �
	 Hdisable�� � � �� � � Ldisable�� � � �� � �� �
disable�� � � � ��� �
	 Hdisable�� � � �� � � Ldisable�� � � �� � �� �

where�� � � �� � �� � � � � � � �	 
, ��� � �� � � 
 � �� � � � � �,
and��� � �� � �
 � �� � � � � �

Figure 5. Refinement operators for PSP

lr� and osc� �	 �� which, respectively, are also only con-
cerned with high- and low-level events (cf. Figure 1).

Hdisable, Ldisable, and Ldisableare formally defined
in Figure 6. Hdisableis used to disable high-level events.
The transition relationHdisable�� � � �� � equals� except
for that pairs in� �� are disabled. Since such a change
does not give rise to new proof obligations (according to
lr� andosc� �	 �� ) no adaptation is required. However, af-
ter disabling low-level events an adaptation becomes neces-
sary. The transition relation���� � 
 � �� � � � � ��� � 
� �� � �� �
which one receives from� by simply disabling all pairs
in � �� might violateosc� �	 �� (depending on� �� and��). Recall thatosc� �	 �� demands that if a low-level
event is disabled in some state then it must be disabled in
all (wrt. �� ) equivalent states as well. There are two ap-
proaches to satisfy this requirement: Either one disablesat
leastall pairs in� �� (plus possibly additional ones) or one
disablesat mostall pairs in � �� (but possibly not all of
them). This gives rise to the difference betweenLdisable
andLdisable. If an event
 shall be disabled in some state� �� (�� �� � 
 � � � �� ) thenLdisable�� � � �� ��� � disables

not only in � �� but also in all states�� which are equivalent
(�� �� � ��). Ldisable�� � � �� ��� � disables an event
 in
state�� only if ��� � 
� � � �� and if �� �� � 
� � � �� for all
states� �� which are equivalent to�� (� �� �� ��). Thus, it can
happen thatLdisable�� � � �� � �� � 	 � although� �� �	 �,
i.e. for inappropriate� �� , Ldisablemay refuse refinement.

The under- and overlining indicates thatLdisablemay
yield a smaller transition relation than a simple disablingof
pairs in� �� , and thatLdisablemay yield a larger relation.
The following subset relations hold in general.2

Ldisable�� � � �� ��� �� ���� � � � �� � � � � ��� � �� �� � �� �� Ldisable�� � � �� � �� � � �
2The first three transition relations are equal if there are no� � � ��� with

�� �� ���, ��� � �
 � ��� , and ���� � �
 �� ��� .

Hdisable�� � � �� �
	 ���� � � � �� � � � � ��� � �� �� � �� �

Ldisable�� � � �� � �� �
	 ���� � � � �� � � � � ��� � �� �� � ���

��� �� � � �� � � �
��� �� � �� � �� �� � � � � �� � � � � �� �� � �� � � �� ��

Ldisable�� � � �� � �� �
	 ��� �� � � � � �� � � � � �� �� � �� � � �� �

��� � �� � � �
��� �� � �� � ��� � � � �� � � � � ��� � �� �� � �� ��

assuming��� � � �� and��� � � ��
Figure 6. Hdisable, Ldisable, and Ldisable

Theorem 3 (Preservation of [AS85] properties).Let� be
a property,�� � � � � be a relation, and� � � � �
� be a set of state-event pairs. If�� � satisfies� then
refine�� � � � � � ��� � andrefine��� � � � � � �� � satisfy� .

Theorem 4 (Preservation of unwinding conditions). Let
� � � � �� be a set of state-event pairs. If�� � satisfies
lr� and osc� �	 �� for an equivalence relation�� � � ��
thenrefine��� � � � � ��� � andrefine��� � � � � ��� � both
satisfy lr� and osc� �	 �� for �� .

Theorem 4 (together with Theorem 1) gives rise to the fol-
lowing corollary.

Corollary 1 (Preservation of PSP). Let �� � � �� be an
equivalence relation and� � � � �� be a set of state-
event pairs. If�� � satisfies lr� and osc� �	 �� for ��
thenrefine�� � � � � � ��� � and refine��� � � � � � �� � sat-
isfy PSP.

Theorem 3 shows that properties in the sense of [AS85] are
preserved under our refinement operators. Note that this
theorem does not require anything about the unwinding re-
lation�� . Thus, one is not forced to investigate information
flow properties at the very beginning of a development pro-
cess. However, according to Corollary 1 one may migrate
to a secure specification, which satisfiesPSP, at any step
of the development by proving the unwinding conditions
lr� andosc� �	 �� . After these unwinding conditions have
been proved,PSPwill be preserved under further refine-
ments with our operators. Usually in such a process,PSP
will be proved using unwinding conditions anyway. For this
reason, we do not consider this assumption of our approach
a real restriction.

We now illustrate the use of the refinement operators at
the state-event system�� � � from Example 3.
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Figure 7. Example application of operators

Example 5.�� � 	 results from refining�� � � by dis-
abling the pairs in� � 	 ���� � 
� � � ��� � � � ��� � 
� �� in
Example 4. Although�� � � satisfiesPSP, �� � 	 does not
satisfyPSP. We now illustrate how�� � � can be refined
using our refinement operators. Let� � and�� be defined
as in Example 3. Let�� � 	 	 refine��� � � � � � � �� � and
�� � 	 	 refine��� � � � � � ��� �. The refined transition re-
lations� 	 (for �� � 	) and� 	 (for �� � 	) are depicted in
Figure 7. In� 	 the transitions��� � 
� � �� � and ��� � 
� � �� �
have been disabled although��� � 
� � � ��� � 
� � �� � � . In
� 	 only ��� �  � �� � has been disabled but��� � 
� � �� � and
��� � 
� � �� � from � � remain enabled. According to Corol-
lary 1,�� � 	 and�� � 	 satisfyPSP.

5 Optimality of Refinement Operators

The functionsHdisable, Ldisable, andLdisableadapt the
transition relation so that the unwinding conditionslr� and
osc� �	 �� are satisfied by the resulting transition relation (as-
suming that they are satisfied by the original transition rela-
tion). How good these adaptations are, is a natural question
to ask. In particular, one would like to know if any addi-
tional disabling is unnecessary (in the case ofLdisable) and
if any of the state-event pairs in� �� which remain enabled
could be safely disabled (in the case ofLdisable). These
questions are the topic of the current section.

One prerequisite for our subsequent results will be the
use of a minimal unwinding relation�� .

Theorem 5. If there is an equivalence relation�� for
which �� � satisfies lr� and osc� �	 �� for �� then there
is a unique minimal relation with this property.

The following theorem shows that our refinement operators
are optimal if one starts with a minimal unwinding relation
and makes some assumptions about the set� � . Here,op-
timality means forrefine that state-event pairs not in� �
are not disabled unnecessarily and forrefine that as many
state-event pairs in� � are disabled as possible without en-
dangeringPSP.

Theorem 6 (One-step optimality). Let � � � �� �� be
a transition relation.

1. Let � � � � �� be a set of state-event pairs such
that for all ��� � �� � �� �� � � � � � � � holds � � �� � � or�� �� � ��, � 	 ��, and � � � . Let �� be the mini-
mal equivalence relation for which� satisfies lr� and
osc� �	 �� . Then disable�� � � � ��� � is the maximal
sub-relation of� , in which all pairs from� � are dis-
abled, and which fulfills lr� and osc� �	 �� .

2. Let � � � � �� be a set of state-event pairs such
that for all ��� � �� � �� �� � � � � � � � holds � � �� � � or�� �� � ��, � 	 ��, and � � � . Let �� be the mini-
mal equivalence relation for which� satisfies lr� and
osc� �	 �� . Thendisable�� � � � � �� � is the minimal
sub-relation of� , in which only pairs from� � are
disabled, and which fulfills lr� and osc� �	 �� .

Theorem 5 ensures the existence of a unique minimal un-
winding relation. How to construct this minimal unwinding
relation in practice, however, is a problem which is outside
the scope of this article. Even if one starts with a mini-
mal relation�� and applies our refinement operators then�� often will not be minimal for the resulting transition
relation. A possible solution is to minimize the unwinding
relation after each refinement step. This would require addi-
tional effort during refinement. However, that loosing min-
imality will turn out to be a significant problem in practice,
is not certain. More experiences with applications of infor-
mation flow control in formal system developments would
be helpful to answer this. Although some practical experi-
ments exist (e.g. [SRS

�
00]), there still is a shortage of case

studies with information flow control today.
Methods for constructing minimal unwinding relations

and for minimizing unwinding relations after refinement
might be desirable. However, such methods are outside the
scope of this article.
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6 Generalizations

In this section we generalize our results from Section 4.
In particular, we present refinement operators for other in-
formation flow properties thanPSPand demonstrate how to
apply our results to other flow policies than the two-level
flow policy � �� . All refinement operators proposed in this
section preserve properties in the sense of [AS85] as well as
the respective unwinding conditions.

6.1 Beyond� ��

In the previous sections, we have focused on a fixed flow
policy, the two-level flow policy� �� . However, one re-
ceives the full flexibility of information flow properties only
by clearly separating flow policies and definitions of infor-
mation flow. The use of� �� induces two assumptions:
there is only one non-interference requirement, i.e.� �� �	 �,
and all invisible events must not be deducible, i.e.� � 	 �.
Note that� �� �	 � subsumes the simplification that there are
only � domains (for transitive flow policies). In the follow-
ing we demonstrate how to relax the assumption� �� � 	 �.

In order to show that a (transitive) flow policy with
� �� � � � is satisfied one needs to prove the unwind-
ing conditions for every domain in the range of�� . In-
tuitively, these unwinding conditions demand for a given
domain� � � that no information about events in� 	� �� � � � � � � �� � � can be inferred from observations
in � 	 � �� � � � � � � � � � �. Thus, the unwind-
ing conditions need to be parametric in� and � . One
can construct parametric unwinding conditions fromlr�
andosc� �	 �� in Figure 1 by replacing� by � and� by
� . If � � �	 � then there would be a third parameter� 	 � �� � � � � � �� � � �. We refer to the triple� ,

�
,

� as theview of domain� . Unwinding conditions which
are not only parametric in� and� but also in

�
will be

investigated in Section 6.2. In this subsection, we retain the
assumption� � 	 �.

For � �� �� �, it is essential that the unwinding conditions
for the view of every domain is preserved during refinement.
However, adapting a transition relation by investigating the
different domains independently from each other is danger-
ous because adaptations for one domain might have side
effects on other domains which have already been investi-
gated. This kind of problem has been discussed in [Jac89]
(cf. Theorem 2 in [Jac89]). We solve the problem by in-
vestigating all domains simultaneously rather than one af-
ter another during refinement. A refinement operatorrefine
which can handle flow policies with� �� � � � is presented
in Figure 8. Note that this version ofrefinetakes a family of
unwinding relations as third argument rather than a single
relation. The key idea is to construct the transitive closure
of the union of the unwinding relations for all domains for

refine��� � � � � � ��� �� �	 ��
	 �� � � � � � � � � � �disable�� � � � � ��� �� �	 ��

disable�� � � � � ��� �� �	 �
	 
 ��� �� � ��� �

Edisable�� � �� �� � � � � � �� ��� � � dom��� � � � � � ��� �

Edisable�� � �� �� � � � � �� �
	 ���� � � � �� � � � � � 	 �� ���� �	 � �� � ��� �� � � ��� �� � �� � �� �� � � � � � �� � � � ���

where�� � � �� � �� � � � � � � � 	 
 and �� �� � � dom��� 
 � � � � �
�
is the transitive closure of� �� � � dom��� 
 � � � � �

Figure 8. Refinement operator for PSP and
flow policies with � �� � � � and � �	 �

which the event of a state-event pair in� � is visible. An
operatorrefinecould be constructed analogously.

6.2 Other Information Flow Properties

The key idea in the construction of our refinement op-
erators forPSPin Section 4 has been to make use of the
unwinding relation�� . This suggests that similar refine-
ment operators can be developed for other information flow
properties if appropriate unwinding results exist.

Below we develop refinement operators basing on the
results in [Mil94] and [Man00b]. The unwinding condi-
tions in these articles differ considerably from the ones
in Section 4. The unwinding results in [Mil94] are con-
cerned withforward correctability[JT88], an information
flow property which behaves nicely under composition. Un-
winding conditions for a class of very primitive informa-
tion flow properties, so calledbasic security predicates,
are presented in [Man00b]. Interestingly, these unwinding
conditions are based on pre-orders, an approach, which is
more flexible than the traditional use of equivalence rela-
tions. Basic security predicates can be used for a mod-
ular construction of more complicated information flow
properties and the unwinding conditions from [Man00b]
can be applied for proving various information flow prop-
erties, including non-inference [O’H90], generalized non-
inference [McL94], generalized non-interference [McC87],
separability [McL94], and the pretty good security predi-
cate [Man00a].

In this subsection we drop the assumption� � 	 �. Re-
call that� � � � �� expresses that occurrences of events
in � � are invisible for�� but that we do not care if they
can be deduced by��. Note that replacing the statement
� � � � �� by either� � �� �� or � � � � � � would be
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more restrictive:� � �� �� would demand that occurrences
of events in� � cannot be deduced by�� and� �� � � �
would assume that�� can observe occurrences of events in
��. Consequently, having� � as a third relation, in addi-
tion to �� and� � , creates additional flexibility for speci-
fying flow policies. In [Man00b] we have shown that a less
restrictive version of the unwinding conditionoscis appro-
priate for flow policies with� � �	 � which simplifies the
proof of the unwinding conditions. However, for preserv-
ing this version ofosc under refinement, the information
contained in the unwinding relation does not suffice. Thus,
we will introduce a relation��� below which is used by the
refinement operators. Like the unwinding relation,��� can
be derived from a proof of the unwinding conditions.

6.2.1 Operators for Basic Security Predicates

In [Man00b] two classes of basic security predicates are
investigatedBSD� �� �� and BSIA� �� �� . Due to space re-
strictions we refer to that article for formal definitions and
motivations of the basic security predicates. In order to sim-
plify the presentation, we assume a fixed flow policy� � �

which has three domains� ,
�

, � , and for which� �� � ,� � � � , and� � 	 �� � � � � ��� � � � � �� � � �� hold.
Since� �� � is the only non-interference requirement, un-
winding conditions need only be investigated for domain� .
For this domain, all events in� are visible and all events in
� are confidential. Events in

�
have a special role because

information about them may be deduced from observations
in � , however, this must not reveal any information about
events from� .3

In [Man00b], pre-orders are used as unwinding relations.
A pre-order �� � � � � is reflexive and transitive, but
need neither be symmetric nor antisymmetric. The unwind-
ing conditions are depicted in Figure 9. The use of pre-
orders splitslr into the conditionslrf and lrb which differ
in the direction of�� . The diagram forosc� �� �� is simi-
lar to the one forosc� �	 �� in Figure 1. The only difference
is the dashed arrow from� �� to � �� which is labeled by� �.
� � � �� �� �� must be a sequence of events which induces
the same observation as�, i.e. � � �� 	 � �� . This difference
to the diagram in Figure 1 originates from dropping the as-
sumption� � 	 �.

Theorem 7 (Unwinding Theorem). If there is a pre-order
�� � � �� for which �� � fulfills osc� �� �� then the fol-
lowing implications are valid: lrf� � BSD� �� �� �Tr� and
lrb� � BSIA� �� �� �Tr�.
Based on this theorem we derive refinement operators for
BSD� �� �� and BSIA� �� �� . The dashed arrow in the dia-
gram of osc causes some difficulties in this construction.

3Using views as parameters ofBSD� �� �� andBSIA� �� �� results in
a slightly different notation.� 	 and�
 in [Man00b] correspond respec-
tively to our� and� while �  � � corresponds to our� .

lrf� : osc� �� �� :


� 
��

��

lrb� :


� 
��

��


 �� � ��


� 
�

� �

�
�� ��

where� � � , � � �  � , � � � ��  � 
� , and� � �� � � ��

Figure 9. Unwinding conditions for the Basic
Security Predicates BSDand BSIA

Simply following the same approach as in Section 4 would
result in refinement operators which are very complicated
and tedious to use. In order to construct usable operators,
we extract further information from the proof of the un-
winding conditions. This information is encoded by a re-
lation ��� � �� � � � � �� � � �. If � � has been used in
the proof thatosc� �� �� holds for�� and� then ��� � �� ���
�� �� � � � � shall express that�� occurs in� � and that� � is the
starting state of this occurrence of��.

To construct a fixed relation��� from a given proof of
the unwinding conditions would be possible. However, we
prefer to specify this relation declaratively because thispro-
vides more flexibility. For this purpose, we impose an addi-
tional restriction onosc� �� �� . We say thatosc� �� �� is satis-
fied for ��� � ��� � if for every �� � �� � � �� � � with �� �� � ��
and every� � � � �

with ��� � � � �� � � � there are� �� � �
and� � � � � such that the diagram foroscin Figure 9 com-
mutes. Let� 	 �� �� � ��� ��� ��� � � � � �� � � � �� � � �� be
the unique sequence with�� 	 � ��, �� 	 � ��, � �� 	 � �, and� � � � � �� � � � �� � � � �� � � � � . The additional restriction
we impose onoscis that��� � �� ��� �� � � � �� � � holds for all� � �

. Note that the same relation��� must be used in the
proof of the commutativity for all instances of the diagram.
Intuitively, ��� � �� ��� �� � � � �� � � expresses that�� � � � �� � �
was used to rule out information leakage by��� � ��.

In Figure 10, a refinement operatorrefinefor BSD� �� ��
and BSIA� �� �� is defined. Interestingly, the use of pre-
orders does not make any difference from the perspective of
refinement. The same refinement operator can be used for
BSDas well as forBSIA. The additional complexity in this
subsection originates purely from dropping the assumption� 	 �. If

� �	 � then the use of��� seems to be ab-
solutely essential for the construction of usable refinement
operators which preserve the unwinding conditions. Due to
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Figure 10. Refinement operator for the Basic
Security Predicates BSDand BSIA

space restrictions we only definerefine. An operatorrefine
could be constructed analogously.

6.2.2 Operators for Forward Correctability

Unwinding conditions for forward correctability have been
presented in [Mil94]. Forward correctability was proposed
in [JT88] as an improvement of restrictiveness [McC87].
For a formal definition and motivation of forward cor-
rectability we refer the reader to [JT88, Mil94].

Forward correctability requires of a system that it is input
total, i.e. all input events must be enabled in all states. This
gives rise to another unwinding condition (t� ) in Figure 11.
The flow policy assumed by forward correctability is an in-
stantiation of� � � (from Section 6.2.1) in which� 	 �,
� 	 � � � , and

� 	 � � � hold. Further unwinding con-
ditions are the corresponding instantiations oflr and osc.
Moreover, two additional unwinding conditions,fwc

�
and

fwc
�
, are concerned with subsequent occurrences of high-

and low-level inputs.fwc
�

andfwc
�

are necessary in order
to capture the nice composability properties of forward cor-
rectability (cf. [JT88]). Altogether, there are five unwinding
conditions, which are depicted in Figure 11.

The following unwinding theorem corresponds to that
part of Theorem 2.1.11 in [Mil94] which ensures the cor-
rectness of the unwinding conditions. In [Mil94], themax-
imal equivalence relation is used in the unwinding condi-
tions. However, for the purpose of refinement, it is best to
choose the unwinding relation as small as possible (cf. Sec-
tion 5). Therefore, we specify the unwinding relation by
commutativity requirements (like in Section 4) rather than
choosing a specific relation.

Theorem 8. If �� � fulfills t� , lr� � , fwc
�� � �� � , fwc

�� � �� � ,
and osc� �� �� � �� � for some equivalence relation��� � �
� then�� � fulfills forward correctability.

During refinement, the commutativity of the diagrams for
lr� � is trivially preserved. Assuming thatt� is preserved,

fwc
�� � �� � �t� �


� ��
�

lr� � �

� ��

��

��


 �� � ��


� 
�

��

��
� � ��

fwc
�� � �� � � osc� �� �� � �� � �

 �� 
 ��


� ��

��

��

� � ��


 �� � ��


� 
�

� �

�
�� ��

where� � � � 	 � , �� � � 	 � , 
 � � , � 
 � � � , �
 � � � ,

� � � � � � , � � � �� � � � 
�, and� � �� � � ��

Figure 11. Unwinding conditions for forward
correctability

the preservation offwc
�� � �� � and fwc

�� � �� � also becomes
trivial. Thus, the diagrams fort� and osc� �� �� � �� � are
the only ones which impose restrictions on refinement. A
technique to preserveosc� �� �� � �� � when� � �	 � holds,
has already been developed in Section 6.2.1. The additional
problem of preservingt� can be handled by ignoring state-
event pairs in� � which involve an input event. The result-
ing refinement operatorrefineis depicted in Figure 12. An
operatorrefinecould be constructed analogously.

7 Comparison to Related Work

The common reference for stating that information flow
control is incompatible with refinement is [Jac89]. Two ma-
jor difficulties for a stepwise development of secure systems
are identified at the example of the information flow prop-
erty “ignorance of progress”. Firstly, security orderingsare,
in general, neither monotonic nor anti-monotonic with re-
spect to the safety ordering. This implies that information
flow properties are, in general, not preserved under refine-
ment. Secondly, two security orderings need not be mono-
tonic with respect to each other. Thus, the security require-
ments of different domains cannot be established indepen-
dently. Furthermore, in [Jac89] a method for stepwise de-
velopment is proposed. Roughly, this method corresponds
to first refining the specification until it could directly be
implemented and then making this specification secure by
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Figure 12. Refinement operator for forward
correctability

deleting traces from the specification using so called weak-
est trusted users. By iterating the later step for differentse-
curity orderings, the security requirements of different do-
mains are established independently from each other. How-
ever, it is neither ensured that this process terminates nor
that it results in a useful live system. In comparison to our
approach, [Jac89] does not propose a method for preserv-
ing information flow properties under refinement but rather
one for making a specification secure after it has been suf-
ficiently refined. To apply this method during refinement,
appears to be infeasible because the complete specification
must be re-investigated at every development step without
taking advantage of investigations performed in previous
steps. Another difference is that the method is based on
the global deletion of complete traces while our approach
is based on the more local disabling of single events. Fi-
nally, we consider the security requirements for all domains
simultaneously during refinement rather than one after an-
other, thereby overcoming the second difficulty for stepwise
development described in [Jac89].

In [GCS91], data refinement is discussed for a security
property which is quite similar toPSP. Also the unwind-
ing conditions correspond to our unwinding conditions in
Section 2.3. However, one difference is the use ofmax-
imal unwinding relations. Data refinement allows one to
refine the notion of state but cannot be used to reduce non-
determinism of an abstract specification by disabling events.
Thus, data refinement differs from the notion of refinement
we have considered in this article. In [GCS91], a condi-
tion is proposed under which the inspected information flow
property is preserved. This condition requires that equiv-
alence classes of the abstract specification are mapped to
equivalence classes of the concrete specification. To prove
this condition appears to be non-trivial because the maxi-
mal equivalence relations for the concrete and the abstract
specification may differ considerably. However, no efficient
technique for proving this condition is proposed.

In [O’H92], information flow is investigated using the
framework of category theory. As a basis for concrete in-
vestigations, a specific category is selected which is based
on sets of traces. Necessary conditions are presented for
proving that a given specification satisfies a confidential-
ity statement. Confidentiality statements are distinguished
from functional requirements. In [O’H92], the functional
requirements are regarded as an upper bound and the con-
fidentiality requirements as a lower bound. The task of a
system designer is to develop a system which is between
these two bounds. However, no efficient method for stay-
ing within the bounds is provided. Rather, it appears to be
necessary to prove confidentiality statements for the refined
specification from scratch after refinement. All results on
preservation of information flow properties in [O’H92] are
concerned with composition (parallel composition as well
as choice) rather than with refinement.

In [RWW94] two definitions of information flow are pre-
sented which are based on determinism in the framework of
the process algebra CSP [Hoa85]. Although both defini-
tions differ, the common underlying idea is that there can
be no information flow from� to � if the low-level be-
haviour is completely deterministic. An advantage is that
these information flow properties are preserved under re-
finement. The refinements which are possible under the
assumptions of this approach are similar to our refinement
operatorHdisable(although the models of computation dif-
fer). However, a major disadvantage of this approach is that
it imposes severe limitations on specifications. Requiring
a deterministic low-level behaviour does not only rule out
information flow but also forbids common forms of paral-
lelism for the low-level and limits the possible abstractions
in abstract specifications.

For recent results on the preservation of security prop-
erties which are no information flow properties, we refer
to [Jür01]. The security property investigated in that article
follows the approach of [DY83].

8 Conclusion

It has been well known that information flow properties
are, in general, not preserved under refinement. However,
we have demonstrated how refinement can be restricted
such that these properties are preserved. The key idea has
been to exploit knowledge about the proof of the informa-
tion flow property that has already been performed on a
more abstract level.

Basing on this idea, we have developed refinement op-
erators for several information flow properties. These op-
erators can be used to derive more concrete specifications
from abstract specifications. We have proved that certain
information flow properties are preserved under the respec-
tive refinement operators. Thus, the use of these infor-
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mation flow properties in a stepwise development process
has become feasible. In particular, we have investigated
the perfect security property (PSP) [ZL97], forward cor-
rectability [JT88], and basic security predicates [Man00a].
Various other information flow properties can be assem-
bled from basic security predicates, including non-inference
[O’H90], generalized non-inference [McL94], generalized
non-interference [McC87], separability [McL94], and the
pretty good security predicate [Man00a]. Since the unwind-
ing conditions from [Man00b] can be used to prove these
properties, it would be straightforward to develop corre-
sponding refinement operators by adapting the ones for the
basic security predicates.

In our approach, we consider the security requirements
of all domains simultaneously during refinement when there
is more than one non-interference requirement. This tech-
nique overcomes a problem described in [Jac89] which oc-
curs if the security requirements of different domains are
established one after another.

The approach which we have proposed in this article is,
to the best of our knowledge, the first feasible approach to
refining information flow properties (cf. our comparison in
Section 7). Nevertheless, a few questions are left unan-
swered which could be valuable topics for future research.
In particular, a method would be desirable which is feasible
for constructing minimal unwinding relations in practice.
Especially, because minimality is a prerequisite of our opti-
mality result (cf. Theorem 6). Since minimality is not pre-
served during refinement without spending additional effort
at each development step, an efficient method for minimiz-
ing the unwinding relation after each refinement step would
be beneficial. However, the significance of these two open
issues can, in our opinion, only be justified by experiments.
Unfortunately, information about only very few case studies
which involve information flow properties is publicly avail-
able (e.g. [SRS

�
00]). Consequently, the development of

further case studies seems to be a very important task for
future research in this area.
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Appendix

This appendix contains the proofs for all theorems in the
article.

Proof (Theorem 1).Follows from the entry forPSPin Ta-
ble 1 of [Man00b].

Proof (Theorem 2).Follows from Definition 5, Definition
6, and the transitivity of�.

Proof (Theorem 3).Follows from disable�� � � � ��� � �
disable�� � � � ��� � � � and Definition 5.

Proof (Theorem 4).Let � �� 	 ��� � � � � � �  � � �
and� �� 	 ��� � 
� � � � � 
 � � �. According to the def-
initions of refineandrefinewe need to prove the following
three statements.

1. � 	� 	 Hdisable�� � � � �� � satisfieslr� as well as
osc� �	 �� for �� .

2. � 	� 	 Ldisable�� � � � �� � �� � satisfieslr � as well as
osc� �	 �� for �� .

3. � 	� 	 Ldisable�� � � � �� � �� � satisfieslr � as well as
osc� �	 �� for �� .

(1) If  � � and ��� �  � �� � � � 	� then ��� �  � �� � � � �
by definition of Hdisable. Since� � satisfieslr� for ��
so does� 	� . For 
 � � holds ��� � 
 � �� � � � 	� if and only if
��� � 
 � �� � � � �. Since� � satisfiesosc� �	 �� for �� so does
� 	� .
(2) For  � � holds ��� �  � �� � � � 	� if and only if
��� �  � �� � � � �. Since� � satisfieslr� for �� so does
� 	� . � � satisfiesosc� �	 �� for �� . We prove by contra-
diction that � 	� also satisfiesosc� �	 �� for �� . Assume�� � � �� � �� � � and
 � � with �� �� � �� and��� � 
 � �� � � � 	�
such that there is no��� with �� �� � 
 � ��� � � � 	� and�� �� ��� .
��� � 
 � �� � � � � because� 	� � � �. Since � � satis-
fies osc� �	 �� for �� there is a state� �� � � such that
�� �� � 
 � � �� � � � � and �� �� � �� . According to our initial
assumption holds�� �� � 
 � � �� � �� � 	� . From the definition of
Ldisablewe conclude that�� �� � 
 � � � �� or, otherwise,
there are states� ��� � � ��� � � with � �� �� � ��� , �� ��� � 
 �� ��� � � � �,
and �� ��� � 
� � � �� . In the first case the definition of
Ldisableyields ��� � 
 � �� � �� � 	� directly and in the second
case by transitivity of�� . This contradicts our initial as-
sumption.
(3) For  � � holds ��� �  � �� � � � 	� if and only if
��� �  � �� � � � �. Since� � satisfieslr� for �� so does
� 	� . � � satisfiesosc� �	 �� for �� . We prove by contra-
diction that � 	� also satisfiesosc� �	 �� for �� . Assume�� � � �� � �� � � and
 � � with �� �� � �� and��� � 
 � �� � � � 	�

such that there is no��� with �� �� � 
 � ��� � � � 	� and�� �� ��� .
��� � 
 � �� � � � � because� 	� � � �. Since � � satis-
fies osc� �	 �� for �� there is a state� �� � � such that
�� �� � 
 � � �� � � � � and �� �� � �� . According to our initial
assumption holds�� �� � 
 � � �� � �� � 	� . Thus, �� �� � 
 � � � �� .
We now distinguish two cases:��� � 
� �� � �� and ��� � 
� �
� �� . In the first case, we obtain�� �� � 
 � � �� � � � 	� from
�� �� � 
� � � �� , �� �� � ��, ��� � 
 � �� � � � �, ��� � 
� �� � �� ,
and the definition ofLdisable. In the second case, we con-
clude from ��� � 
 � �� � � � 	� and the definition ofLdisable
that there are states� ��� � � ��� � � with � ��� �� ��, �� ��� � 
 � � ��� � �
� �, and �� ��� � 
 � �� � �� . We obtain�� �� � 
 � � �� � � � 	� from
the definition ofLdisableusing the transitivity of�� . Thus
in both cases, we have a contradiction to our initial assump-
tion.

Proof (Theorem 5).Assume � 	 ���� � �� � � � � � �
reachable��� � � � � � ���� �  � �� � � � �. Closing� un-
der reflexivity, symmetry, transitivity, andosc� �	 �� yields
a minimal unwinding relation�� . There are no choices in
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this construction (Recall from Section 2.3 that� is func-
tional. The choice of� �� is completely determined by� �� and

.). Thus,�� is theuniqueminimal unwinding relation.

Proof (Theorem 6).We only prove the first proposition in
the theorem by contradiction. The second proposition can
be proved analogously.

(1) Assume there is anonemptyset� � � � with � � �
disable�� � � � ��� � 	 � and

� ��� � � � �� � � � � ���� � �� ��
� � such that� � � disable�� � � � � �� � satisfieslr� and
osc� �	 �� for �� . Select��� � � � �� � � � � arbitrarily. � �� must hold according to the assumptions about� � and
the definition ofHdisable. According to the definition
of Ldisable there are states� �� � � �� � � with �� �� � ��,
�� �� � � � � �� � � � , and�� �� � �� � � �� . Summarizing, we have
� � �, �� �� � ��, and��� � � � �� � � � ��disable�� � � � ��� �
but there is no state� �� � � such that�� �� � � � � �� � � � � �
disable�� � � � ��� �. Thus� � � disable�� � � � ��� � does
not satisfyosc� �	 �� , a contradiction to our initial assump-
tion.

Proof (Theorem 7).Theorem 7 corresponds to Theorem 3
in [Man00b].

Proof (Theorem 8).Theorem 8 is a specialization of the
correctness part of Theorem 2.1.11 in [Mil94]. If there is an
equivalence relation�� such that the diagrams fort� , lr � � ,
fwc

�� � �� � , fwc
�� � �� � , andosc� �� �� � �� � commute then the

conditions�� �� � � � and �� �� ��� �
� �� from Theorem

2.1.11 are satisfied.t� implies the input totality require-
ment, lr � � ensures�� �� � �� �, andfwc

�� � �� � , fwc
�� � �� �

together guarantee�� �� ��� �� � ��. That ���
� holds,

is ensured byosc� �� �� � �� � . Thus, according to Theorem
2.1.11 in [Mil94] �� � fulfills forward correctability.
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