
Technical Report No. 498

Eliminating Implicit Information Leaks by

Transformational Typing and Unification

Boris Köpf1 and Heiko Mantel2?

1 Information Security, ETH Zürich, Switzerland, Boris.Koepf@inf.ethz.ch
2 Department of Computer Science, RWTH Aachen University, Germany,

mantel@cs.rwth-aachen.de

Abstract. Before starting the security analysis of an existing system,
the most likely outcome is often already clear, namely that the system is
not entirely secure. Modifying a program such that it passes the analysis
is a difficult problem and usually left entirely to the programmer. In this
article, we show that and how unification can be used to compute such
program transformations. This opens a new perspective on the problem
of correcting insecure programs. We demonstrate that integrating our
approach into an existing transforming type system can also improve
the precision of the analysis and the quality of the resulting programs.

1 Introduction

Security requirements like confidentiality or integrity can often be adequately
expressed by restrictions on the permitted flow of information. This approach
goes beyond access control models in that it controls not only the access to data,
but also how data is propagated within a program after a legitimate access.

Security type systems provide a basis for automating the information flow
analysis of concrete programs [SM03]. If type checking succeeds then a program
has secure information flow. If type checking fails then the program might be
insecure and should not be run. After a failed type check, the task of correct-
ing the program is often left to the programmer. Given the significance of the
problem, it would be very desirable to have automated tools that better support
the programmer in this task. For the future, we envision a framework for the
information flow analysis that, firstly, gives more constructive advice on how a
given program could be improved and, secondly, in some cases automatically
corrects the program, or parts thereof, without any need for interaction by the
programmer. The current article focuses on the second of these two aspects.

? Most of this work has been performed while being a member of the Information
Security Group at the ETH Zurich. The author gratefully acknowledges support by
the DFG.

Obviously, one cannot allow an automatic transformation to modify programs
in completely arbitrary ways as the transformed program should resemble the
original program in some well-defined way. Such constraints can be captured
by defining an equivalence relation on programs and demanding that the trans-
formed program is equivalent to the original program under this relation. A
second equivalence relation can be used to capture the objective of a transfor-
mation. The problem of removing implicit information leaks from a program can
be viewed as the problem of making alternative execution paths observationally
equivalent. For instance, if the guard of a conditional depends on a secret then
the two branches must be observationally equivalent because, otherwise, an un-
trusted observer might be able to deduce the value of the guard and, thereby,
the secret. The PER model [SS99] even reduces the problem of making an entire
program secure to the problem of making the program equivalent to itself.

In our approach, meta-variables are inserted into a program and are instan-
tiated with programs during the transformation. The problem of making two
program fragments equivalent is cast as a unification problem, which allows us
to automatically compute suitable substitutions using existing unification algo-
rithms. The approach is parametric in two equivalence relations. The first re-
lation captures the semantic equivalence to be preserved by the transformation
while the second relation captures the observational equivalence to be achieved.

We define two concrete equivalence relations to instantiate our approach and
integrate this instance into an existing transforming type system [SS00]. This
results in a security type system that is capable of recognizing some secure pro-
grams and of correcting some insecure programs that are rejected by the original
type system. Moreover, the resulting programs are faster and often substantially
smaller in size. Another advantage over the cross-copying technique [Aga00],
which constitutes the current state of the art in this area, is that security poli-
cies with more than two levels can be considered. Besides these technical advan-
tages, the use of unification yields a very natural perspective on the problem of
making two programs observationally equivalent. However, we do not claim that
using unification will solve all problems with repairing insecure programs or that
unification would be the only way to achieve the above technical advantages.

The contributions of this article are a novel approach to making the infor-
mation flow in a given program secure and the demonstration that transforming
security type systems can benefit from the integration of this approach.

2 The Approach

The observational capabilities of an attacker can be captured by an equivalence
relation on configurations, i.e. pairs consisting of a program and a state. Namely,
(C1, s1) is observationally equivalent to (C2, s2) for an attacker a if and only if
the observations that a makes when C1 is run in state s1 equal a’s observations
when C2 is run in s2. The programs C1 and C2 are observationally equivalent for
a if, for all states s1 and s2 that are indistinguishable for a, the configurations
(C1, s1) and (C2, s2) are observationally equivalent for a. The resulting relation
on programs is only a partial equivalence relation (PER), i.e. a transitive and

2

symmetric relation that need not be reflexive. If a program C is not observa-
tionally equivalent to itself for a then running C in two indistinguishable states
may lead to different observations and, thereby, reveal the differences between
the states or, in other words, let a learn secret information. This observation is
the key to capturing secure information flow in the PER model [SS99] in which
a program is secure if and only if it is observationally equivalent to itself.

In this article, we focus on the removal of implicit information leaks from a
program. There is a danger of implicit information leakage if the flow of control
depends on a secret and the alternative execution paths are not observationally
equivalent for an attacker. The program if h then l:=1 else l:=0, for instance,
causes information to flow from the boolean guard h into the variable l, and this
constitutes an illegitimate information leak if h stores a secret and the value of
l is observable for the attacker. Information can also be leaked in a similar way,
e.g., when the guard of a loop depends on a secret, when it depends on a secret
whether an exception is raised, or when the target location of a jump depends
on a secret. For brevity of the presentation, we focus on the case of conditionals.

We view the problem of making the branches of a conditional equivalent as a
unification problem under a theory that captures observational equivalence. To
this end, we insert meta-variables into the program under consideration that can
be substituted during the transformation. For a given non-transforming security
type system, the rule for conditionals is modified such that, instead of checking
whether the branches are equivalent, the rule calculates a unifier of the branches
and applies it to the conditional. Typing rules for other language constructs are
lifted such that they propagate the transformations that have occurred in the
analysis of the subprograms. In summary, our approach proceeds as follows:

1. Lift the given program by inserting meta-variables at suitable locations.
2. Repair the lifted program by applying lifted typing rules.
3. Eliminate all remaining meta-variables.

The approach is not only parametric in the given security type system and in the
theory under which branches are unified, but also in where meta-variables are
placed and how they may be substituted. The latter two parameters determine
how similar a transformed program is to the original program. They also limit the
extent to which insecure programs can be corrected. For instance, one might de-
cide to insert meta-variables between every two sub-commands and to permit the
substitution of meta-variables with arbitrary programs. For these choices, lifting
P1 = if h then l:=1 else l:=0 results in if h then (α1; l:=1; α2) else (α3; l:=0; α4)
and the substitution {α1\l:=0, α2\ε, α3\ε, α4\l:=1} (where ε is denotes the
empty program) is a unifier of the branches under any equational theory as the
substituted program is if h then (l:=0; l:=1) else (l:=0; l:=1). Alternatively, one
might decide to restrict the range of substitutions to sequences of skip state-
ments. This ensures that the transformed program more closely resembles the
original program, essentially any transformed program is a slowed-down ver-
sion of the original program, but makes it impossible to correct programs like
P1. However, the program P2 = if h then (skip; l:=1) else l:=1, which is inse-
cure in a multi-threaded setting (as we will explain later in this section), can

3

be corrected under these choices to if h then (skip; l:=1) else (skip; l:=1). Alter-
natively, one could even decide to insert higher-order meta-variables such that
lifting P1 leads to if h then α1(l:=1) else α2(l:=0) and applying, e.g., the uni-
fier {α1\(λx.skip), α2\(λx.skip)} results in if h then skip else skip while applying
the unifier {α1\(λx.x), α2\(λx.l:=1)} results in if h then l:=1 else l:=1. These
examples just illustrate the wide spectrum of possible choices for defining in
which sense a transformed program must be equivalent to the original program.
Ultimately it depends on the application, how flexible one is in dealing with
the trade-off between being able to correct more insecure programs and having
transformed programs that more closely resemble the original programs.

There also is a wide spectrum of possible choices for defining the (partial)
observational equivalence relation. For simplicity, assume that variables are clas-
sified as either low or high depending on whether their values are observable by
the attacker (low variables) or secret (high variables). As a convention, we denote
low variables by l and high variables by h, possibly with indexes and primes.
Given that the values of low variables are only observable at the end of a program
run, the programs P3 = (skip; l := 0) and P4 = (l := h; l := 0) are observationally
equivalent and each is equivalent to itself (which means secure information flow
in the PER model). However, if the attacker can observe also the intermediate
values of low variables then they are not equivalent and, moreover, only P3 is
secure while P4 is insecure. If the attacker can observe the timing of assignments
or the duration of a program run then P2 = if h then (skip; l:=1) else l:=1 is
insecure and, hence, not observationally equivalent to itself. In a multi-threaded
setting, P2 should be considered insecure even if the attacker cannot observe the
timing of assignments or the duration of a program run. If P3 = (skip; l := 0)
is run in parallel with P2 under a shared memory and a round-robin scheduler
that re-schedules after every sub-command then the final value of l is 0 and 1 if
the initial value of h is 0 and 1, respectively. That is, a program that is observa-
tionally equivalent to itself in a sequential setting might not be observationally
equivalent to itself in a multi-threaded setting – for the same attacker.

3 Instantiating the Approach

We are now ready to illustrate how our approach can be instantiated. We intro-
duce a simple programming language, a security policy, an observational equiv-
alence, and a program equivalence to be preserved under the transformation.

Programming Language. We adopt the multi-threaded while language (short:
MWL) from [SS00], which includes assignments, conditionals, loops, and a com-
mand for dynamic thread creation. The set Com of commands is defined by

C ::= skip | Id :=Exp | C1; C2 | if B then C1 else C2 | while B do C | fork(CV)

where V is a command vector in Com =
⋃

n∈N
Comn. Expressions are variables,

constants, or terms resulting from applying binary operators to expressions. A
state is a mapping from variables in a given set Var to values in a given set Val .
We use the judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates
to value n in state s. Expression evaluation is assumed to be total and to occur

4

atomically. We say that expressions Exp and Exp′ are equivalent to each other
(denoted by Exp≡Exp′) if and only if they evaluate to identical values in each
state, i.e. ∀s ∈ S : ∀v ∈ Val : 〈|Exp, s|〉 ↓ v ⇔ 〈|Exp′, s|〉 ↓ v.

The operational semantics for MWL is formalized in Figures 5 and 6 in the
appendix. Deterministic judgments have the form 〈|C, s|〉 _ 〈|W, t|〉 expressing
that command C performs a computation step in state s, yielding a state t

and a vector of commands W , which has length zero if C terminated, length
one if it has neither terminated nor spawned any threads, and length > 1 if
threads were spawned. That is, a command vector of length n can be viewed
as a pool of n threads that run concurrently. Nondeterministic judgments have
the form 〈|V, s|〉 _ 〈|V ′, t|〉 expressing that some thread Ci in the thread pool V

performs a step in state s resulting in the state t and some thread pool W . The
global thread pool V ′ results then by replacing Ci with W . For simplicity, we
do not distinguish between commands and command vectors of length one in
the notation and use the term program for referring to commands as well as to
command vectors. A configuration is then a pair 〈|V, s|〉 where V specifies the
threads that are currently active and s defines the current state of the memory.

In the following, we adopt the naming conventions used above. That is, s, t

denote states, Exp denotes an expression, B denotes a boolean expression, C

denotes a command, and V, W denote command vectors.

Security Policy and Labellings. We assume a two-domain security policy, where
the requirement is that there is no flow of information from the high domain to
the low domain. This is the simplest policy under which the problem of secure
information flow can be studied. Each program variable is associated with a secu-
rity domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and,
hence, their values must not be observable for the attacker. As mentioned before,
we use l and h to denote high and low variables, respectively. An expression Exp
has the security domain low (denoted by Exp : low) if all variables in Exp have
domain low and, otherwise, has security domain high (denoted by Exp : high).
The intuition is that values of expressions with domain high possibly depend on
secrets while values of low expressions can only depend on public data.

Observational Equivalence. The rules in Figure 1 inductively define a relation
lL ⊆ Com ×Com that will serve us as an observational equivalence relation.

The relation lL captures observational equivalence for an attacker who can
see the values of low variables at any point during a program run and cannot
distinguish states s1 and s2 if they are low equal (denoted by s1 =L s2), i.e. if
∀var ∈ Var : lab(var) = low =⇒ s1(var) = s2(var). He cannot distinguish two
program runs that have equal length and in which every two corresponding states
are low equal. For capturing this intuition, Sabelfeld and Sands introduce the
notion of a strong low bisimulation. The relation lL also captures this intuition
and, moreover, programs that are related by lL are also strongly bisimilar. That
is, lL is a decidable approximation of the strong bisimulation relation.

5

Definition 1 ([SS00]). The strong low-bisimulation uL is the union of all
symmetric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C
′
n〉, such that

∀s, s′, t∈ S : ∀i∈{1 . . . n} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉 _ 〈|W, t|〉)
⇒∃W ′ ∈ Com: ∃t′ ∈ S: (〈|C′

i , s
′|〉 _ 〈|W ′, t′|〉 ∧ W R W ′ ∧ t =L t′)]

Theorem 1 (Adequacy of lL). If V lL V ′ is derivable then V uL V ′ holds.

The proofs of this and all subsequent results will be provided in an extended
version of this article.

Remark 1. Note that lL and uL are only partial equivalence relations, i.e. they
are transitive and symmetric, but not reflexive. For instance, the program l:=h

is not lL-related to itself because the precondition of [LA], the only rule in
Figure 1 applicable to assignments to low variables, rules out that high variables
occur on the right hand side of the assignment. Moreover, the program l:=h is
not strongly low bisimilar to itself because the states s and t (defined by s(l) = 0,
s(h) = 0, t(l) = 0, t(h) = 1) are low equal, but the states s′ and t′ resulting after
l:=h is run in s and t, respectively, are not low equal (s′(l) = 0 6= 1 = t′(l)).

However, lL is an equivalence relation if one restricts programs to the lan-
guage Slice that we define as the largest sub-language of Com without assign-
ments of high expressions to low variables, assignments to high variables, and
loops or conditionals having high guards. On Slice, lL even constitutes a congru-
ence relation. This sub-language is the context in which we will apply unification
and, hence, using the term unification under an equational theory is justified. ♦

Program Equivalence. We introduce an equivalence relation ' to constrain the
modifications caused by the transformation. Intuitively, this relation requires a
transformed program to be a slowed down version of the original program. This
is stronger than the constraint in [SS00].

Definition 2. The weak possibilistic bisimulation ' is the union of all sym-
metric relations R on command vectors such that whenever V R V ′ then for all
states s, t and all vectors W there is a vector W ′ such that

〈|V, s|〉 _ 〈|W, t|〉 =⇒ (〈|V ′, s|〉 _
∗ 〈|W ′, t|〉 ∧ WRW ′)

and V = 〈〉 =⇒ 〈|V ′, s|〉 _
∗ 〈|〈〉, s|〉 .

4 Lifting a Security Type System

In this section we introduce a formal framework for transforming programs by
inserting and instantiating meta-variables. Rather than developing an entirely
new formalism from scratch, we adapt an existing security type system from
[SS00]. We show that any transformation within our framework is sound in the
sense that the output is secure and the behavior of the original program is
preserved in the sense of Definition 2.

6

skip lL skip
[Skip]

Id : high

skip lL Id :=Exp
[SHA1]

Id : high

Id :=Exp lL skip
[SHA2]

Id : high Id ′ : high

Id :=Exp lL Id ′:=Exp′
[HA]

Id : low Exp : low Exp′ : low Exp ≡ Exp ′

Id :=Exp lL Id :=Exp ′
[LA]

C1 lL C′
1, . . . , Cn lL C′

n

〈C1, . . . , Cn〉 lL 〈C′
1, . . . , C

′
n〉

[PComp]
C lL C′ V lL V ′

fork(CV) lL fork(C′V ′)
[Fork]

B, B′ : low B ≡ B′ C1 lL C′
1 C2 lL C′

2

if B then C1 else C2 lL if B′ then C′
1 else C′

2

[LIte]
B, B′ : low B ≡ B′ C lL C′

while B do C lL while B′ do C′
[WL]

B, B′ : high C1 lL C′
1 C1 lL C′

2 C1 lL C2

if B then C1 else C2 lL if B′ then C′
1 else C′

2

[HIte]
C1 lL C′

1 C2 lL C′
2

C1; C2 lL C′
1; C

′
2

[SComp]

B′ : high C1 lL C′
1 C1 lL C′

2

skip; C1 lL if B′ then C′
1 else C′

2

[SHIte1]
B : high C1 lL C′

1 C2 lL C′
1

if B then C1 else C2 lL skip; C′
1

[SHIte2]

Id : high B′ : high C1 lL C′
1 C1 lL C′

2

Id :=Exp; C1 lL if B′ then C′
1 else C′

2

[HAHIte1]

Id ′ : high B : high C1 lL C′
1 C2 lL C′

1

if B then C1 else C2 lL Id ′:=Exp ′; C′
1

[HAHIte2]

Fig. 1. A notion of observational equivalence

Substitutions and Liftings. We insert meta-variables from a set V = {α1, α2, . . . }
into a program by sequential composition with its sub-terms. The extension of
MWL with meta-variables is denoted by MWLV . The set ComV of commands
in MWLV is defined by3

C ::= skip | Id :=Exp | C1; C2 | C; X | X ; C

if B then C1 else C2 | while B do C | fork(CV) ,

where placeholders X, Y range over V . Analogously to MWL, the set of all com-
mand vectors in MWLV is defined by ComV =

⋃
n∈N

(ComV)n. Note that the
ground programs in MWLV are exactly the programs in MWL. The operational
semantics for such programs remain unchanged, whereas programs with meta-
variables are not meant to be executed.

Meta-variables may be substituted with programs, meta-variables or the spe-
cial symbol ε that acts as the neutral element of the sequential composition
operator (“;”), i.e. ε; C = C and C; ε = C4. When talking about programs in
ComV under a given substitution, we implicitly assume that these equations have
been applied (from left to right) to eliminate the symbol ε from the program.
Moreover, we view sequential composition as an associative operator and implic-
itly identify programs that differ only in the use of parentheses for sequential
composition. That is, C1; (C2; C3) and (C1; C2); C3 denote the same program.

3 Here and in the following, we overload notation by using C and V to denote com-
mands and command vectors in ComV , respectively.

4 Note that skip is not a neutral element of (“;”) as skip requires a computation step.

7

A mapping σ : V → ({ε} ∪ V ∪ ComV) is a substitution if the set {α ∈ V |
σ(α) 6= α} is finite. A substitution mapping each meta-variable in a program
V to {ε} ∪ Com is a ground substitution of V . A substitution π mapping all
meta-variables in V to ε is a projection of V . Given a program V in Com , we
call every program V ′ in ComV with πV ′ = V a lifting of V .

For example, the program if h then (α1; skip; α2; l:=1) else (α3; l:=1) is in fact
a lifting of if h then (skip; l:=1) else l:=1. In the remainder of this article, we will
focus on substitutions with a restricted range.

Definition 3. A substitution with range {ε}∪ StutV is called preserving, where
StutV is defined by C ::= X | skip | C1; C2 (the Ci range over StutV).

The term preserving substitution is justified by the fact that such substitutions
preserve a given program’s semantics as specified in Definition 2.

Theorem 2 (Preservation of Behavior).

1. Let V ∈ ComV . For all preserving substitutions σ, ρ that are ground for V ,
we have σ(V) ' ρ(V).

2. Let V ∈ Com. For each lifting V ′ of V and each preserving substitution σ

with σ(V ′) ground, we have σ(V ′) ' V .

Unification of Programs. The problem of finding a substitution that makes
the branches of conditionals with high guards observationally equivalent can
be viewed as the problem of finding a unifier for the branches under the equa-
tional theory lL.5 To this end, we lift the relation lL⊆ Com × Com to a
binary relation on ComV that we also denote by lL.

Definition 4. V1, V2 ∈ ComV are observationally equivalent (V1 lL V2) iff
σV1 lL σV2 for each preserving substitution σ that is ground for V1 and V2.

Definition 5. A lL-unification problem ∆ is a finite set of statements of the
form Vil

?
LV ′

i , i.e. ∆ = {V0l
?
LV ′

0 , . . . , Vnl?
LV ′

n} with Vi, V
′
i ∈ ComV for all

i ∈ {0, . . . , n}. A substitution σ is a preserving unifier for ∆ if and only if σ

is preserving and σVi lL σV ′
i holds for each i ∈ {0, . . . , n}. A lL-unification

problem is solvable if the set of preserving unifiers U(∆) for ∆ is not empty.

A Transforming Type System. The transforming type system in Figure 2 has
been derived from the one in [SS00]. We use the judgment V ↪→ V ′ : S for de-
noting that the MWLV -program V can be transformed into an MWLV-program
V ′. The intention is that V ′ has secure information flow and reflects the seman-
tics of V as specified by Definition 2. The slice S is a program that is in the
sub-language SliceV and describes the timing behavior of V ′. The novelty over
[SS00] is that our type system operates on ComV (rather than on Com) and
that the rule for high conditionals has been altered. In the original type system, a
high conditional is transformed by sequentially composing each branch with the

5 The term equational theory is justified as we apply unification only to programs in the
sub-language SliceV for which lL constitutes a congruence relation (see Remark 1).

8

skip ↪→ skip : skip
[Skp]

Id : high

Id :=Exp ↪→ Id :=Exp : skip
[Assh]

C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

C1; C2 ↪→ C′
1; C

′
2 : S1; S2

[Seq]

Id : low Exp : low

Id :=Exp ↪→ Id :=Exp : Id :=Exp
[Assl]

B : low C ↪→ C′ : S

while B do C ↪→ while B do C′ : while B do S
[Whl]

C1 ↪→ C′
1 : S1 . . . Cn ↪→ C′

n : Sn

〈C1, . . . , Cn〉 ↪→ 〈C′
1, . . . , C

′
n〉 : 〈S1, . . . , Sn〉

[Par]
C1 ↪→ C′

1 : S1 V2 ↪→ V ′
2 : S2

fork(C1V2) ↪→ fork(C′
1V

′
2) : fork(S1S2)

[Frk]

B : low C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2

if B then C1 else C2 ↪→ if B then C′
1 else C′

2 : if B then S1 else S2

[Condl]

B : high C1 ↪→ C′
1 : S1 C2 ↪→ C′

2 : S2 σ ∈ U({S1l
?
LS2})

if B then C1 else C2 ↪→ if B then σC′
1 else σC′

2 : skip; σS1

[Condh]
X ↪→ X : X

[Var]

Fig. 2. A transforming security type system for programs with meta-variables

slice of the respective other branch. Instead of cross-copying slices, our rule in-
stantiates the meta-variables occurring in the branches using preserving unifiers.
The advantages of this modification are discussed in Section 6. Note that the
rule [Condh] does not mandate the choice of a specific preserving unifier of the
branches. Nevertheless, we can prove that the type system meets our previously
described intuition about the judgment V ↪→ V ′ : S. To this end, we employ
Sabelfeld and Sands’s strong security condition for defining what it means for
a program to have secure information flow. Many other definitions are possible
(see e.g. [SM03]).

Definition 6. A program V ∈ Com is strongly secure if and only if V uL V

holds. A program V ∈ ComV is strongly secure if and only if σV is strongly
secure for each substitution σ that is preserving and ground for V .

Theorem 3 (Soundness Type System). If V ↪→ V ′ : S can be derived then
(1) V ′ has secure information flow, (2) V ' V ′ holds,6 and (3) V ′

uL S holds.

The following corollary is an immediate consequence of Theorems 2 and 3. It
shows that lifting a program and then applying the transforming type system
preserves a program’s behavior in the desired way.

Corollary 1. If V ∗ ↪→ V ′ : S is derivable for some lifting V ∗ ∈ ComV of a
program V ∈ Com then V ′ has secure information flow and V ' V ′.

5 Automating the Transformation

In Section 4, we have shown our type system to be sound for any choice of lift-
ings and preserving unifiers in the applications of rule [Condh]. For automating
the transformation, we have to define more concretely where meta-variables are
inserted and how unifiers are determined.

6 Here and in the following, we define ' on ComV by C ' C′ iff σC ' σC′ for any
substitution σ that is preserving and ground for C and for C′.

9

X fresh
skip ⇀ skip; X

Id : high X fresh

Id :=Exp ⇀ Id :=Exp; X

Id : low X, Y fresh

Id :=Exp ⇀ X; Id :=Exp; Y

C1 ⇀ C′
1; X C2 ⇀ C′

2

C1; C2 ⇀ C′
1; C

′
2

C1 ⇀ C′
1, . . . , Cn ⇀ C′

n

〈C1, . . . , Cn〉 ⇀ 〈C′
1, . . . , C

′
n〉

C1 ⇀ C′
1 V2 ⇀ V ′

2 X, Y fresh

fork(C1V2) ⇀ X; (fork(C′
1V

′
2)); Y

C ⇀ C′ X, Y fresh

while B do C ⇀ X; (while B do C′); Y

C1 ⇀ C′
1 C2 ⇀ C′

2 X, Y fresh

if B then C1 else C2 ⇀ X; (if B then C1 else C2); Y

Fig. 3. A calculus for computing most general liftings

Automatic Insertion of Meta-Variables. When lifting a program, one is faced
with a trade off: inserting meta-variables means to create possibilities for cor-
recting the program, but it also increases the complexity of the unification prob-
lem. Within this spectrum our objective is to minimize the number of inserted
meta-variables without losing the possibility of correcting the program.

To this end, observe that two programs C1 and C2 within the sub-language
PadV , the extension of StutV with high assignments, are related via lL when-
ever they contain the same number of constants, i.e., skips and assignments to
high variables (denoted as const(C1) = const(C2)), and the same number of
occurrences of each meta-variable α (denoted by |C1|α = |C2|α). Note that the
positioning of meta-variables is irrelevant.

Lemma 1. For two commands C1 and C2 in PadV we have C1 lL C2 if and
only if const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.

Moreover, observe that inserting one meta-variable next to another does not
create new possibilities for correcting a program. This, together with Lemma 1,
implies that inserting one meta-variable into every subprogram within PadV is
sufficient for allowing every possible correction. We use this insight to define a
mapping ⇀: Com → ComV that calculates a lifting of a program by inserting
one fresh meta-variable at the end of every sub-program in PadV , and between
every two sub-programs outside PadV . The mapping is defined inductively: A
fresh meta-variable is sequentially composed to the right hand side of each sub-
program. Another fresh meta-variable is sequentially composed to the left hand
side of each assignment to a low variable, fork, while loop, or conditional. A
lifting of a sequentially composed program is computed by sequentially compos-
ing the liftings of the subprograms while removing the terminal variable of the
left program.The full calculus is given in Figure 3. The liftings computed by ⇀

are most general in the sense that if two programs can be made observation-
ally equivalent for some lifting then they can be made equivalent for the lifting
computed by ⇀. In other words, ⇀ is complete.

Theorem 4. Let V ′
1 , V ′

2 , V1, and V2 be in ComV and let V1, V2 ∈ Com.

1. If Vi ⇀ Vi can be derived then Vi is a lifting of Vi (i = 1, 2).

2. Suppose V1 (V2) shares no meta-variables with V ′
1 , V ′

2 , and V2 (V ′
1 , V ′

2 , and
V1). If V1 ⇀ V1 and V2 ⇀ V2 can be derived and V ′

1 and V ′
2 are liftings

10

of V1, V2, respectively, then U({V ′
1l?

LV ′
2}) 6= ∅ implies U({V1l

?
LV2}) 6= ∅.

Furthermore, U({V ′
1l?

LV ′
1}) 6= ∅ implies U({V1l

?
LV1}) 6= ∅.

Integrating Standard Unification Algorithms. Standard algorithms for unifica-
tion modulo an associative and commutative operator with neutral element and
constants (see, e.g., [BS01] for background information on AC1 unification) build
on a characterization of equality that is equivalent to the one in Lemma 1. This
correspondence allows one to employ existing algorithms for AC1-unification
problems with constants and free function symbols (like, e.g., the one in [HS87])
to the unification problems that arise when applying the rule for conditionals
and then to filter the output such that only preserving substitutions remain.7

Automating Unification. In the following, we go beyond simply applying an ex-
isting unification algorithm by exploiting the specific shape of our unification
problems and the limited range of substitutions in the computation of unifiers.
Recall that we operate on programs in SliceV , i.e., on programs without assign-
ments to high variables, without assignments of high expressions to low variables,
and without loops or conditionals having high guards.

The operative intuition behind our problem-tailored unification algorithm is
to scan two program terms from left to right and distinguish two cases: if both
leftmost subcommands are free constructors, (low assignments, loops, condi-
tionals and forks) they are compared and, if they agree, unification is recursively
applied to pairs of corresponding subprograms and the residual programs. If one
leftmost subcommand is skip, both programs are decomposed into their max-
imal initial subprograms in StutV and the remaining program. Unification is
recursively applied to the corresponding subprograms. Formally, we define the
language NSeqV of commands in SliceV \ {skip} without sequential composition
as a top-level operator, and the language NStutV of commands in which the left-
most subcommand is not an element of StutV . NStutV is given by C ::= C1; C2,
where C1 ∈ NSeqV and C2 ∈ SliceV .

The unification algorithm in Figure 4 is given in form of a calculus for deriving
judgments of the form C1l

?
LC2 :: η, meaning that η is a preserving unifier of the

commands C1 and C2. Note that the unifiers obtained from recursive application
of the algorithm to sub-programs are combined by set union. This is admissible
if the meta-variables in all subprograms are disjoint, as the following lemma
shows:

Lemma 2. Let V1, V2 ∈ SliceV and let every variable occur at most once in
(V1, V2). Then V1l

?
LV2 :: η implies η ∈ U({V1l

?
LV2})

Observe that the stand-alone unification algorithm is not complete, as it re-
lies on the positions of meta-variables inserted by ⇀. However, we can prove a
completeness result for the combination of both calculi.

7 For the reader familiar with AC1 unification: In the language StutV one views ε

as the neutral element, skip as the constant, and ; as the operator. For SliceV , the
remaining language constructs, i.e., assignments, conditionals, loops, forks, and ;
(outside the language StutV) must be treated as free constructors.

11

C1l
?
LC2 :: η C1, C2 ∈ StutV

X; C1l
?
LC2 :: η[X\ε]

[Seq1]
C1l

?
LC2 :: η C1, C2 ∈ StutV

C1l
?
LX; C2 :: η[X\ε]

[Seq ′
1]

C1l
?
LC2 :: η C1, C2 ∈ StutV

skip; C1l
?
Lskip; C2 :: η

[Seq2]
C ∈ StutV ∪ {ε}

Xl
?
LC :: {X\C}

[Var1]
C ∈ StutV ∪ {ε}

Cl
?
LX :: {X\C}

[Var2]

C1l
?
LC′

1 :: η1 C2l
?
LC′

2 :: η2 C1,C
′
1∈NSeq

V

C1; C2l
?
LC′

1; C
′
2 :: η1 ∪ η2

[Seq3]

C1l
?
LC′

1 :: η1 C2l
?
LC′

2 :: η2 C1,C
′
1∈StutV∪{ε}, C2,C

′
2∈NStutV

C1; C2l
?
LC′

1; C
′
2 :: η1 ∪ η2

[Seq4]

Id : low Exp1 ≡ Exp2

Id :=Exp1l
?
LId :=Exp2 :: ∅

[Asg]
Cl?

LC′ :: η V l?
LV ′ :: η2

fork(CV)l?
Lfork(C′V ′) :: η1 ∪ η2

[Frk]

C1l
?
LC2 :: η B1, B2 : low B1 ≡ B2

while B1 do C1l
?
Lwhile B2 do C2 :: η

[Whl]
C1l

?
LC′

1 :: η1, . . . , Cnl?
LC′

n :: ηn

〈C1, . . . , Cn〉l
?
L〈C

′
1, . . . , C

′
n〉 ::

S

n

i=1
ηi

[Par]

C1l
?
LC′

1 :: η1 C2l
?
LC′

2 :: η2 B1, B2 : low B1 ≡ B2

if B1 then C1 else C2l
?
Lif B2 then C′

1 else C′
2 :: η1 ∪ η2

[Ite]

Fig. 4. Unification calculus

Completeness. If conditionals with high guards are nested then the process of
transformational typing possibly involves repeated applications of substitutions
to a given subprogram. Hence, care must be taken in choosing a substitution in
each application of rule [Condh] because, otherwise, unification problems in later
applications of [Condh] might become unsolvable.8 Fortunately, the instantiation
of our framework presented in this section does not suffer from such problems.

Theorem 5 (Completeness). Let V ∈ Com, V , W ∈ ComV , W be a lifting
of V , and V ⇀ V .

1. If there is a preserving substitution σ with σW lL σW , then V ↪→′ V ′ : S

for some V ′, S ∈ ComV .
2. If W ↪→ W ′ : S for some W ′, S ∈ ComV then V ↪→′ V ′ : S′ for some

V ′, S′ ∈ ComV .

Here, the judgment V ↪→′ V ′ : S denotes a successful transformation of V to V ′

by the transformational type system, where the precondition σ ∈ U({S1l
?
LS2})

is replaced by S1l
?
LS2 :: σ in rule [Condh].

6 Related Work and Discussion

Type-based approaches to analyzing the security of the information flow in
concrete programs have received much attention in recent years [SM03]. This

8 A standard solution would be to apply most general unifiers. Unfortunately, they do
not exist in our setting

12

resulted in security type systems for a broad range of languages (see, e.g.,
[VS97,SV98,HR98,Mye99,Sab01,SM02,BN02,HY02,BC02,ZM03,MS04]).

Regarding the analysis of conditionals with high guards, Volpano and Smith
[VS98] proposed the atomic execution of entire conditionals for enforcing obser-
vational equivalence of alternative execution paths. This somewhat restrictive
constraint is relaxed in the work of Agat [Aga00] and Sabelfeld and Sands [SS00]
who achieve observational equivalence by cross-copying the slices of branches.
The current article introduces unification modulo an equivalence relation as an-
other alternative for making the branches of a conditional observationally equiv-
alent to each other. Let us compare the latter two approaches more concretely
for the relation lL that we have introduced to instantiate our approach.

The type system introduced in Section 4 is capable of analyzing programs
where assignments to low variables appear in the branches of conditionals with
high guards, which is not possible with the type system in [SS00].

Example 1. If one lifts C = if h1 then (h2:=Exp1; l:=Exp2) else (l:=Exp2) where
Exp2 : low using our lifting calculus, applies our transforming type system, and
finally removes all remaining meta-variables by applying a projection then this
results in if h1 then (h2:=Exp1; l:=Exp2) else (skip; l:=Exp2), a program that is
strongly secure and also weakly bisimilar to C. Note that the program C cannot
be repaired by applying the type system from [SS00]. ♦

Another advantage of our unification-based approach over the cross-copying
technique is that the resulting programs are faster and smaller in size.

Example 2. The program if h then (h1:=Exp1) else (h2:=Exp2) is returned un-
modified by our type system, while the type system from [SS00] transforms it
into the bigger program if h then (h1:=Exp1; skip) else (skip; h2:=Exp2). If one ap-
plies this type system a second time, one obtains an even bigger program, namely
if h then (h1:=Exp1; skip; skip; skip) else (skip; skip; skip; h2:=Exp2). In contrast, our
type system realizes a transformation that is idempotent, i.e. the program re-
sulting from the transformation remains unmodified under a second application
of the transformation. ♦

Non-transforming security type systems for the two-level security policy can be
used to also analyze programs under a policy with more domains. To this end, one
performs multiple type checks where each type check ensures that no illegitimate
information flow can occur into a designated domain. For instance, consider a
three-domain policy with domains D = {top, left , right} where information may
only flow from left and from right to top. To analyze a program under this policy,
one considers all variables with label top and left as if labeled high in a first type
check (ensuring that there is no illegitimate information flow to right) and, in a
second type check, considers all variables with label top and right as if labeled
high . There is no need for a third type check as all information may flow to
top. When adopting this approach for transforming type systems, one must take
into account that the guarantees established by the type check for one domain
might not be preserved under the modifications caused by the transformation

13

for another domain. Therefore, one needs to iterate the process until a fixpoint
is reached for all security domains.

Example 3. For the three-level policy from above, the program C = if t then (t:=t′;
r:=r′; l:=l′) else (r:=r′; l:=l′) (assuming t, t′ : top, r, r′ : right and l, l′ : left)
is lifted to C = if t then (t:=t′; r:=r′; α1; l:=l′; α2) else (r:=r′; α3; l:=l′; α4) and
transformed into if t then (t:=t′; r:=r′; l:=l′) else (r:=r′; skip; l:=l′) when analyz-
ing security w.r.t. an observer with domain left . Lifting for right then results in
if t then (t:=t′; α1; r:=r′; l:=l′; α2) else (α3; r:=r′; skip; l:=l′; α4). Unification and
projection gives if t then (t:=t′; r:=r′; l:=l′; skip) else (skip; r:=r′; skip; l:=l′). Ob-
serve that this program is not secure any more from the viewpoint of a left–
observer. Applying the transformation again for domain left results in the se-
cure program if t then (t:=t′; r:=r′; skip; l:=l′; skip) else (skip; r:=r′; skip; l:=l′; skip),
which is a fixpoint of both transformations. ♦

Note that the idempotence of the transformation is a crucial prerequisite (but
not a sufficient one) for the existence of a fixpoint and, hence, for the termination
of such an iterative approach. As is illustrated in Example 2, the transformation
realized by our type system is idempotent, whereas the transformation from
[SS00] is not.

Another possibility to tackle multi-level security policies in our setting is to
unify the branches of a conditional with guard of security level D′ under the
theory

⋂
D 6≥D′ lD. An investigation of this possibility remains to be done.

The chosen instantiation of our approach preserves the program behavior in
the sense of a weak bisimulation. Naturally, one can correct more programs if
one is willing to relax this relationship between input and output of the transfor-
mation. For this reason, there are also some programs that cannot be corrected
with our type system although they can be corrected with the type system in
[SS00] (which assumes a weaker relationship between input and output).

Example 4. if h then (while l do (h1:=Exp)) else (h2:=1) is rejected by our type
system. The type system in [SS00] transforms it into the strongly secure program
if h then (while l do (h1:=Exp); skip) else (while l do (skip); h2:=1). Note that this
program is not weakly bisimilar to the original program as the cross-copying of
the while loop introduces possible non-termination. ♦

If one wishes to permit such transformations, one could, for instance, choose a
simulation instead of the weak bisimulation when instantiating our approach.
This would result in an extended range of substitutions beyond StutV . For in-
stance, to correct the program in Example 4, one needs to instantiate a meta-
variable with a while loop. We are confident that, in such a setting, using our
approach would even further broaden the scope of corrections while retaining
the advantage of transformed programs that are comparably small and fast.

7 Conclusions

We proposed a novel approach to analyzing the security of information flow in
concrete programs with the help of transforming security type systems where

14

the key idea has been to integrate unification with typing rules. This yielded a
very natural perspective on the problem of eliminating implicit information flow.

We instantiated our approach by defining a program equivalence captur-
ing the behavioral equivalence to be preserved during the transformation and
an observational equivalence capturing the perspective of a low-level attacker.
This led to a novel transforming security type system and calculi for automat-
ically inserting meta-variables into programs and for computing substitutions.
We proved that the resulting analysis technique is sound and also provided a
relative completeness result. The main advantages of our approach include that
the precision of type checking is improved, that additional insecure programs
can be corrected, and that the resulting programs are faster and smaller in size.

It will be interesting to see how our approach performs for other choices of
the parameters like, e.g., observational equivalences that admit intentional de-
classification [MS04]). Another interesting possibility is to perform the entire
information flow analysis and program transformation using unification with-
out any typing rules, which would mean to further explore the possibilities of
the PER model. Finally, it would be desirable to integrate our fully automatic
transformation into an interactive framework for supporting the programmer in
correcting insecure programs.

References

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM

Symposium on Principles of Programming Languages, pages 40–53, 2000.
[BC02] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and

Thread Systems. Theoretical Computer Science, 281:109–130, 2002.
[BN02] A. Banerjee and D. A. Naumann. Secure Information Flow and Pointer Con-

finement in a Java-like Language. In Proceedings of the 15th IEEE Computer

Security Foundations Workshop, pages 253–270, Cape Breton, Nova Scotia,
Canada, 2002.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–
532. Elsevier Science, 2001.

[HR98] N. Heintze and J. G. Riecke. The SLam Calculus: Programming with Secrecy
and Integrity. In Proceedings of the 25th ACM Symposium on Principles of

Programming Languages, pages 365–377, 1998.
[HS87] A. Herold and J. Siekmann. Unification in Abelian Semigroups. Journal of

Automated Reasoning, 3:247–283, 1987.
[HY02] K. Honda and N. Yoshida. A uniform type structure for secure information

flow. In Proceedings of the 29th ACM Symposium on Principles of Program-

ming Languages, pages 81–92. ACM Press, 2002.
[MS04] Heiko Mantel and David Sands. Controlled Declassification based on Intran-

sitive Noninterference. In Proceedings of the 2nd ASIAN Symposium on Pro-

gramming Languages and Systems, APLAS 2004, LNCS 3303, pages 129–145,
Taipei, Taiwan, November 4–6 2004. Springer-Verlag.

[Mye99] A. Myers. JFlow: Practical mostly-static information flow control. In Sympo-

sium on Principles of Programming Languages, pages 228–241, 1999.

15

[Sab01] A. Sabelfeld. The Impact of Synchronisation on Secure Information Flow in
Concurrent Programs. In Proceedings of Andrei Ershov 4th International Con-

ference on Perspectives of System Informatics, volume 2244 of LNCS, pages
225–239, 2001.

[SM02] A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Distributed
Programs. In Proceedings of the 9th International Static Analysis Symposium,

SAS’02, volume 2477 of LNCS, pages 376–394, Madrid, Spain, 2002.
[SM03] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security.

IEEE Journal on Selected Areas in Communication, 21(1):5–19, 2003.
[SS99] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Se-

quential Programs. In Proceedings of the 8th European Symposium on Pro-

gramming, LNCS, pages 50–59, 1999.
[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded

Programs. In Proceedings of the 13th IEEE Computer Security Foundations

Workshop, pages 200–215, Cambridge, UK, 2000.
[SV98] G. Smith and D. Volpano. Secure Information Flow in a Multi-Threaded

Imperative Language. In 25th ACM Symposium on Principles of Programming

Languages, San Diego, California, pages 355–364, 1998.
[VS97] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In

TAPSOFT 97, volume 1214 of LNCS, pages 607–621, 1997.
[VS98] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Lan-

guage. In Proceedings of the 11th IEEE Computer Security Foundations Work-

shop, pages 34–43, Rockport, Massachusetts, 1998.
[ZM03] S. Zdancewic and A. Myers. Observational determinism for concurrent pro-

gram security. In Proceedings of the 16th IEEE Computer Security Foundations

Workshop, 2003, pages 29–47. IEEE Computer Society, 2003.

A Semantics of MWL

The operational semantics for MWL are given in Figures 5 and 6.

B Proofs of the Technical Results

B.1 Proof of Theorem 1

Before proving Theorem 1, we introduce a lemma and prove it using the bisimulation-
up-to technique.

Definition 7. A binary relation R on commands is a strong low bisimulation
up to uL if R is symmetric and

∀C, C′, C1, . . . , Cn ∈ Com: ∀s, s′, t ∈ S:
(C R C′ ∧ s =L s′ ∧ 〈|C, s|〉 _ 〈|C1 . . . Cn, t|〉)
⇒∃C′

1, . . . , C
′
n ∈ Com: ∃t′ ∈ S: (〈|C′, s′|〉 _ 〈|C′

1 . . . C′
n, t′|〉

∧ ∀i ∈ {1, . . . , n} : Ci(R∪ uL)+C′
i ∧ t =L t′)

16

〈|Ci, s|〉 _ 〈|W ′
, t|〉

〈|〈C0 . . . Cn−1〉, s|〉 _ 〈|〈C0 . . . Ci−1〉W ′〈Ci+1 . . . Cn−1〉, t|〉

Fig. 5. Small-step nondeterministic semantics

〈|skip, s|〉 _ 〈|〈〉, s|〉
〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 _ 〈|〈〉, [Id = n]s|〉

〈|C1, s|〉 _ 〈|〈〉, t|〉

〈|C1; C2, s|〉 _ 〈|C2, t|〉

〈|C1, s|〉 _ 〈|〈C′

1〉V, t|〉

〈|C1; C2, s|〉 _ 〈|〈C′
1; C2〉V, t|〉

〈|fork(CV), s|〉 _ 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2, s|〉 _ 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2, s|〉 _ 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C, s|〉 _ 〈|C;while B do C, s|〉

〈|B, s|〉 ↓ False

〈|while B do C, s|〉 _ 〈|〈〉, s|〉

Fig. 6. Small-step deterministic semantics

Theorem 6. If R is a strong low bisimulation up to uL then R ⊆uL holds.

Proof (Sketch). Define Q = ((R∪ uL)↑)+ where + returns the transitive closure
of a relation and ↑ returns the pointwise lifting of a relation on commands to
command vectors (here, R∪ uL is viewed as a relation on commands). We obtain
Q ⊆uL from the fact that Q satisfies the implication in Definition 1 (replacing
R in the definition by Q). The implication can be proved by a straightforward in-
duction over the Q-distance between the related programs where the Q-distance
between V and V ′ is the minimal length of a sequence 〈V1, . . . , Vn〉 with the
properties ∀i ∈ {0, . . . , n} : Vi (R∪ uL)↑ Vi+1, V0 = V , and Vn+1 = V ′. Such a
sequence exists because V0 Q Vn+1 holds. We obtain R ⊆uL from R ⊆ Q (by
definition of Q) and the transitivity of ⊆.

Lemma 3.

1. If Id : high then skip uL Id :=Exp.
2. If Exp,Exp′ : low and Exp ≡ Exp′ then Id :=Exp uL Id :=Exp′.
3. If C1 uL C′

1 and C2 uL C′
2 then C1; C2 uL C′

1; C
′
2.

4. If C1 uL C′
1 and V2 uL V ′

2 then fork(C1V2) uL fork(C′
1V

′
2).

5. If B, B′ : low, B ≡ B′, and C1 uL C′
1 then while B do C1 uL while B′ do C′

1.
6. If B, B′ : low, B ≡ B′, C1 uL C′

1, and C2 uL C′
2 then if B then C1 else C2 uL

if B′ then C′
1 else C′

2.
7. If C1 uL C′

1 and C1 uL C′
2 then skip; C1 uL if B′ then C′

1 else C′
2.

Proof. In each case, we prove the strong low bisimilarity of the two commands
with the bisimulation up-to technique. That is, we define a binary relation R

on commands that relates the two commands and prove that R is a strong low
bisimulation up to uL. From Theorem 6, we then obtain that the two given
commands are strongly low bisimilar.

17

1. Define R as the symmetric closure of the relation {(skip , Id :=Exp) | Id :
high}.
Let (skip , Id :=Exp) ∈ R and s, s′ ∈ S be arbitrary with s =L s′. From
the operational semantics, we obtain 〈|skip, s|〉 _ 〈|〈〉, s|〉. Moreover, there is
a t′ ∈ S such that 〈|Id :=Exp, s′|〉 _ 〈|〈〉, t′|〉. From s =L s′ and Id : high , we
obtain s =L t′.
Let (Id :=Exp , skip) ∈ R and s, s′, t ∈ S be arbitrary with s =L s′ and
〈|Id :=Exp, s|〉 _ 〈|〈〉, t|〉. We have 〈|skip, s′|〉 _ 〈|〈〉, s′|〉. From s =L s′ and
Id : high , we obtain t =L s′.
Hence, R is a strong low bisimulation up to uL.

2. Define R as the symmetric relation {(Id :=Exp , Id :=Exp′) | Exp,Exp′ :
low ,Exp ≡ Exp′}.
Let (Id :=Exp , Id :=Exp′) ∈ R and s, s′, t ∈ S be arbitrary with s =L s′ and
〈|Id :=Exp, s|〉 _ 〈|〈〉, t|〉. Choose t′ ∈ S with 〈|Id :=Exp′, s′|〉 _ 〈|〈〉, t′|〉. From
s =L s′, Exp,Exp′ : low , and Exp ≡ Exp′, we obtain t =L t′.
Hence, R is a strong low bisimulation up to uL.

3. Define R as the symmetric relation {(C1; C2 , C′
1; C

′
2) | C1 uL C′

1, C2 uL

C′
2}.

Let (C1; C2 , C′
1; C

′
2) ∈ R and s, s′, t ∈ S be arbitrary with s =L s′ and

〈|C1; C2, s|〉 _ 〈|C∗, t|〉 for some C∗ ∈ Com . We make a case distinction on
C∗ according to the operational semantics:
(a) C∗ = C2: From the operational semantics, we obtain 〈|C1, s|〉 _ 〈|〈〉, t|〉.

Since C1 uL C′
1 and s =L s′, there is a t′ ∈ S with 〈|C′

1, s
′|〉 _ 〈|〈〉, t′|〉

and t =L t′ according to Definition 1. From the operational semantics,
we obtain 〈|C′

1; C
′
2, s

′|〉 _ 〈|C′
2, t

′|〉 with C2 uL C′
2 (by definition of R) and

t =L t′.
(b) C∗ = 〈C; C2〉V for some C ∈ Com and V ∈ Com (possibly V = 〈〉).

From the operational semantics, we obtain 〈|C1, s|〉 _ 〈|〈C〉V, t|〉. Since,
C1 uL C′

1 and s =L s′, there are C′ ∈ Com , V ′ ∈ Com , and t′ ∈ S

with 〈|C′
1, s

′|〉 _ 〈|〈C′〉V ′, t′|〉, C uL C′, V uL V ′, and t =L t′. From
the operational semantics, we obtain 〈|C′

1; C
′
2, s

′|〉 _ 〈|〈C′; C′
2〉V

′, t′|〉 with
(C; C2 , C′; C′

2) ∈ R (follows from C uL C′, C2 uL C′
2, and the defini-

tion of R), V uL V ′, and t =L t′.
Hence, R is a strong low bisimulation up to uL.

4. Define R as the symmetric relation {(fork(CV) , fork(C′V ′)) | C uL C′, V uL

V ′}.
Let (fork(CV) , fork(C′V ′)) ∈ R and s, s′ ∈ S be arbitrary with s =L s′.
From the operational semantics, we obtain 〈|fork(CV), s|〉 _ 〈|〈C〉V, s|〉 and
〈|fork(C′V ′), s′|〉 _ 〈|〈C′〉V ′, s′|〉. From the definition of R and Definition 1, we
obtain 〈C〉V uL 〈C′〉V ′.
Hence, R is a strong low bisimulation up to uL.

5. Define R as the symmetric relation

{ (while B do C1 , while B′ do C′
1), (C1; while B do C2 , C′

1; while B′ do C′
2)

| B, B′ : low , B ≡ B′, C1 uL C′
1, C2 uL C′

2}

Let (while B do C1 , while B′ do C′
1) ∈ R and s, s′, t ∈ S be arbitrary with

s =L s′. We make a case distinction on the value of B in s:

18

(a) 〈|B, s|〉 ↓ False: From s =L s′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, s′|〉 ↓
False. From the operational semantics, we obtain 〈|while B do C1, s|〉 _

〈|〈〉, s|〉 and 〈|while B′ do C′
1, s

′|〉 _ 〈|〈〉, s′|〉 with s =L s′.
(b) 〈|B, s|〉 ↓ True: From s =L s′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, s′|〉 ↓

True. From the operational semantics, we obtain 〈|while B do C1, s|〉 _

〈|C1; while B do C1, s|〉 and 〈|while B′ do C′
1, s

′|〉 _ 〈|C′
1; while B′ do C′

1, s
′|〉

with (C1; while B do C1 , C′
1; while B′ do C′

1) ∈ R (follows from B, B′ :
low , B ≡ B′, C1 uL C′

1, and the definition of R) and s =L s′.

Let (C1; while B do C2 , C′
1; while B′ do C′

2) ∈ R and s, s′ ∈ S be arbitrary
with s =L s′ and 〈|C1; while B do C2, s|〉 _ 〈|C∗, t|〉 for some C∗ ∈ Com . We
make a case distinction on C∗ according to the operational semantics:

(a) C∗ = while B do C2: From the operational semantics, we obtain 〈|C1, s|〉 _

〈|〈〉, t|〉. Since C1 uL C′
1 and s =L s′, there is a t′ ∈ S with 〈|C′

1, s
′|〉 _

〈|〈〉, t′|〉 and t =L t′ according to Definition 1. From the operational se-
mantics, we obtain 〈|C′

1; while B′ do C′
2, s

′|〉 _ 〈|while B′ do C′
2, t

′|〉 with
(while B do C2 , while B′ do C′

2) ∈ R (follows from B, B′ : low , B ≡ B′,
C2 uL C′

2, and the definition of R) and t =L t′.
(b) C∗ = 〈C; while B do C2〉V for some C ∈ Com and V ∈ Com (possibly

V = 〈〉). From the operational semantics, we obtain 〈|C1, s|〉 _ 〈|〈C〉V, t|〉.
Since, C1 uL C′

1 and s =L s′, there are C′ ∈ Com , V ′ ∈ Com , and
t′ ∈ S with 〈|C′

1, s
′|〉 _ 〈|〈C′〉V ′, t′|〉, C uL C′, V uL V ′, and t =L t′.

From the operational semantics, we obtain 〈|C′
1; while B′ do C′

2, s
′|〉 _

〈|〈C′; while B′ do C′
2〉V

′, t′|〉 with (C; while B do C2 , C′; while B′ do C′
2) ∈

R (follows from C uL C′, while B do C2 uL while B′ do C′
2, and the

definition of R), V uL V ′, and t =L t′.

Hence, R is a strong low bisimulation up to uL.
6. Define R as the symmetric relation {(if B then C1 else C2 , if B′ then C′

1 else C′
2) |

B, B′ : low , B ≡ B′, C1 uL C′
1, C2 uL C′

2}.
Let (if B then C1 else C2 , if B′ then C′

1 else C′
2) ∈ R and s, s′ ∈ S be arbitrary

with s =L s′. We make a case distinction on the value of B in s:

(a) 〈|B, s|〉 ↓ False: From s =L s′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, s′|〉 ↓
False. From the operational semantics, we obtain 〈|if B then C1 else C2, s|〉 _

〈|C2, s|〉 and 〈|if B′ then C′
1 else C′

2, s
′|〉 _ 〈|C′

2, s
′|〉 with s =L s′. By defini-

tion of R, we have C2 uL C′
2.

(b) 〈|B, s|〉 ↓ True: From s =L s′, B, B′ : low, and B ≡ B′, we obtain 〈|B′, s′|〉 ↓
True. From the operational semantics, we obtain 〈|if B then C1 else C2, s|〉 _

〈|C1, s|〉 and 〈|if B′ then C′
1 else C′

2, s
′|〉 _ 〈|C′

1, s
′|〉 with s =L s′. By defini-

tion of R, we have C1 uL C′
1.

Hence, R is a strong low bisimulation up to uL.
7. Define R as the symmetric closure of the relation

{(skip; C1 , if B′
then C′

1 else C′
2) | C1 uL C′

1, C1 uL C′
2}.

Let (skip; C1 , if B′ then C′
1 else C′

2) ∈ R and s, s′ ∈ S be arbitrary with
s =L s′. We make a case distinction on the value of B′ in s′:

19

(a) 〈|B′, s′|〉 ↓ False: From the operational semantics, we obtain 〈|skip; C1, s|〉 _

〈|C1, s|〉 and 〈|if B′ then C′
1 else C′

2, s
′|〉 _ 〈|C′

2, s
′|〉 with s =L s′. By defini-

tion of R, we have C1 uL C′
2.

(b) 〈|B′, s′|〉 ↓ True: From the operational semantics, we obtain 〈|skip; C1, s|〉 _

〈|C1, s|〉 and 〈|if B′ then C′
1 else C′

2, s
′|〉 _ 〈|C′

1, s
′|〉 with s =L s′. By defini-

tion of R, we have C1 uL C′
1.

Let (if B′ then C′
1 else C′

2 , skip; C1) ∈ R and s, s′ ∈ S be arbitrary with
s =L s′. We make a case distinction on the value of B′ in s:
(a) 〈|B′, s|〉 ↓ False: Then we obtain 〈|if B′ then C′

1 else C′
2, s|〉 _ 〈|C′

2, s|〉 and
〈|skip; C1, s

′|〉 _ 〈|C1, s
′|〉 from the operational semantics with s =L s′. By

definition of R, we have C1 uL C′
2.

(b) 〈|B′, s|〉 ↓ True: Then we obtain 〈|if B′ then C′
1 else C′

2, s|〉 _ 〈|C′
1, s|〉 and

〈|skip; C1, s
′|〉 _ 〈|C1, s

′|〉 from the operational semantics with s =L s′. By
definition of R, we have C1 uL C′

1.
Hence, R is a strong low bisimulation up to uL.

We are now ready to prove Theorem 1.

Proof (of Theorem 1). The proof proceeds by induction on the number of rule
applications in the derivation D of V lL V ′.

Base case: D consists of only a single rule application. We make a case dis-
tinction on this rule.

[Skip] The judgment derived is skip lL skip. Lemma 3(1) implies skip uL h:=h

where h is an arbitrary variable with h : high . From symmetry and transitivity
of uL, we obtain skip uL skip.

[SHA1] The judgment derived is skip lL Id :=Exp with Id : high . From
Lemma 3(1) follows skip uL Id :=Exp.

[SHA2] The judgment derived is Id :=Exp lL skip with Id : high . From
Lemma 3(1) and the symmetry of uL, we obtain Id :=Exp uL skip.

[HA] The judgment derived is Id :=Exp lL Id ′
:=Exp′ with Id , Id ′ : high .

From Lemma 3(1), we obtain skip uL Id :=Exp and skip uL Id ′
:=Exp′. Symmetry

and transitivity of uL imply Id :=Exp uL Id ′
:=Exp′.

[LA] The judgment derived is Id :=Exp lL Id :=Exp′ with Id : low , Exp,Exp′ :
low , and Exp ≡ Exp′. Lemma 3(2) implies Id :=Exp uL Id :=Exp′.

Induction assumption: If D′ is a derivation of W lL W ′ with fewer rule
applications than in D then W uL W ′ holds.

Step case: We make a case distinction depending on the rule applied at the
root of D.

[SComp] The judgment derived is C1; C2 lL C′
1; C

′
2 and there are derivations

D1 and D2 of C1 lL C′
1 and C2 lL C′

2, respectively. From the induction assump-
tion, we obtain C1 uL C′

1 and C2 uL C′
2. Lemma 3(3) implies C1; C2 uL C′

1; C
′
2.

[PComp] The judgment derived is 〈C1, . . . , Cn〉 lL 〈C′
1, . . . , C

′
n〉 and there

are derivations Di of Ci lL C′
i for i = 1, . . . , n. From the induction assumption,

we obtain Ci uL C′
i for i = 1, . . . , n. From Definition 1, we obtain 〈C1, . . . , Cn〉 uL

〈C′
1, . . . , C

′
n〉.

[Fork] The judgment derived is fork(C1V1) lL fork(C′
1V

′
1) and there are

derivations D1 and D2 of C1 lL C′
1 and V1 lL V ′

1 , respectively. From the

20

induction assumption, we obtain C1 uL C′
1 and V1 uL V ′

1 . Lemma 3(4) implies
fork(C1V1) uL fork(C′

1V
′
1).

[WL] The judgment derived is while B do C1 lL while B′ do C′
1 with B, B′ :

low , B ≡ B′, and there is a derivation D1 of C1 lL C′
1. Lemma 3(5) implies

while B do C1 uL while B′ do C′
1.

[LIte] The judgment derived is if B then C1 else C2 lL if B′ then C′
1 else C′

2

with B, B′ : low , B ≡ B′, and there are derivations D1 and D2 of C1 lL

C′
1 and C2 lL C′

2, respectively. Lemma 3(6) implies if B then C1 else C2 uL

if B′ then C′
1 else C′

2.
[SHIte1] The judgment derived is skip; C1 lL if B′ then C′

1 else C′
2 with

B′ : high and there are derivations D1 and D2 of C1 lL C′
1 and C1 lL C′

2,
respectively. From the induction assumption, we obtain C1 uL C′

1 and C1 uL C′
2.

Lemma 3(7) implies skip; C1 uL if B′ then C′
1 else C′

2.
[SHIte2] The judgment derived is if B then C1 else C2 lL skip; C′

1 with B : high
and there are derivations D1 and D2 of C1 lL C′

1 and C2 lL C′
1, respectively.

From the induction assumption, we obtain C1 uL C′
1 and C2 uL C′

1. Symmetry
of uL and Lemma 3(7) imply skip; C′

1 uL if B then C1 else C2. From the symmetry
of uL, we obtain if B then C1 else C2 uL skip; C′

1

[HAHIte1] The judgment derived is Id :=Exp; C1 lL if B′ then C′
1 else C′

2

with Id : high , B′ : high , and there are derivations D1 and D2 of C1 lL C′
1 and

C1 lL C′
2, respectively. From skip; C1 uL if B′ then C′

1 else C′
2 (see Case [SHIte1]),

Id :=Exp; C1 uL skip; C1, and transitivity of uL, we obtain Id :=Exp; C1 uL

if B′ then C′
1 else C′

2.
[HAHIte2] The judgment derived is if B then C1 else C2 lL Id ′

:=Exp′; C′
1

with Id ′ : high , B : high , and there are derivations D1 and D2 of C1 lL

C′
1 and C2 lL C′

1, respectively. From if B then C1 else C2 uL skip; C′
1 (see

Case [SHIte2]), skip; C′
1 uL Id ′

:=Exp′; C′
1, and transitivity of uL, we obtain

if B then C1 else C2 uL Id ′
:=Exp′; C′

1.
[HIte] The judgment derived is if B then C1 else C2 lL if B′ then C′

1 else C′
2

with B, B′ : high and there are derivations D1, D2, and D3 of C1 lL C′
1, C1 lL

C′
2, and C1 lL C2, respectively. From the induction assumption, we obtain

C1 uL C′
1, C1 uL C′

2, and C1 uL C2. From symmetry and transitivity of uL

follows C1 uL C1. Lemma 3(7) implies skip; C1 uL if B then C1 else C2 and
skip; C1 uL if B′ then C′

1 else C′
2. From the symmetry and transitivity of uL, we

obtain if B then C1 else C2 uL if B′ then C′
1 else C′

2.

B.2 Proof of Theorem 2

For the proof of Theorem 2 we first strengthen our notion of bisimulation. Then
we prove a lemma that shows that this relation is a congruence by using the
up-to technique.

Definition 8. The pointwise weak bisimulation
�

' is the union of all symmet-
ric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C
′
n〉, such that whenever V RV ′ then for all

21

states s, t and all i ∈ {1 . . . n} and all thread pools W there is a thread pool W ′

with
〈|Ci, s|〉 _ 〈|W, t|〉) ⇒ (〈|C′

i , s|〉 _
∗ 〈|W ′, t|〉 ∧ W R W ′)

and V = 〈〉 =⇒ 〈|V ′, s|〉 →∗ 〈|〈〉, s|〉.

Lemma 4. V
�

' V ′ ⇒ V ' V ′

Proof. Follows directly from Definitions 2 and 8 and the operational semantics
for thread pools.

Definition 9. A binary relation R on commands is a pointwise weak bisimula-

tion up to
�

' if R is symmetric and

∀C, C′, C1, . . . , Cn ∈ Com: ∀s, t ∈ S:
(C R C′ ∧ 〈|C, s|〉 _ 〈|C1 . . . Cn, t|〉)
⇒∃C′

1, . . . , C
′
n ∈ Com: (〈|C′, s|〉 _

∗ 〈|C′
1 . . . C′

n, t|〉

∧ ∀i ∈ {1, . . . , n} : Ci(R∪
�

')C′
i).

Theorem 7. If R is a pointwise weak bisimulation up to
�

', then we have R⊆
�

'.

Proof. Let Q = (R∪
�

')↑, where ↑ returns the pointwise lifting of a relation

on commands to command vectors (here, R∪
�

' is viewed as a relation on

commands). It is sufficient to show Q ⊆
�

'. To this means, we show that Q

satisfies the condition in Definition 8, and is therefore contained in
�

', the
union of all such relations. Let V = 〈C1, . . . , Cn〉 and V ′ = 〈C′

1, . . . , C
′
n〉 and

(V, V ′) ∈ Q. If n = 0, then the second condition of Definition 8 is fulfilled.
Suppose n > 0 and 〈|V, s|〉 _ 〈|W, t|〉. By definition of the operational seman-
tics, we know that there is i ∈ {1, . . . , n} with 〈|Ci, s|〉 _ 〈|Ci,1, . . . , Ci,m, t|〉 and
W = 〈C1, . . . , Ci−1, Ci,1, . . . , Ci,m, Ci+1, . . . , Cn〉.

1. Case 1: (Ci, C
′
i) ∈

�

'. By Definition 8, there are C′
i,1, . . . , C

′
i,m with 〈|C′

i, s|〉 _
∗

〈|C′
i,1, . . . , C

′
i,m, t|〉 and 〈Ci,1, . . . , Ci,m〉

�

' 〈C′
i,1, . . . , C

′
i,m〉. By the nature of

Definition 8 it follows that Ci,j

�

' Ci,j holds for all j ∈ {1, . . . , m}.
2. Case 2: (Ci, C

′
i) ∈ R. By Definition 9, there are C′

i,1, . . . , C
′
i,m with 〈|C′

i, s|〉 _
∗

〈|C′
i,1, . . . , C

′
i,m, t|〉 and Ci,j(R∪

�

')C′
i,j for all j ∈ {1, . . . , m}.

With W ′ = 〈C′
1, . . . , C

′
i−1, C

′
i,1, . . . , C

′
i,m, C′

i+1, . . . , C
′
n〉 we have 〈|V ′, s|〉 _

∗ 〈|W ′, t|〉

and (W, W ′) ∈ Q. As
�

' is defined to be the union of all symmetric relations with

the property of Definition 8, we see Q ⊆
�

'.

Lemma 5.

1. If C1

�

' C′
1 and C2

�

' C′
2 then C1; C2

�

' C′
1; C

′
2.

22

2. If C1

�

' C′
1 and V2

�

' V ′
2 then fork(C1V2)

�

' fork(C′
1V

′
2).

3. If C1

�

' C′
1 then while B do C1

�

' while B do C′
1.

4. If C1

�

' C′
1, and C2

�

' C′
2 then if B then C1 else C2

�

' if B then C′
1 else C′

2.

5. If C1

�

' C′
1, . . . , Cn

�

' C′
n, then 〈C1, . . . , Cn〉

�

' 〈C′
1, . . . , C

′
n〉.

Proof. We proceed as in the proof of Lemma 3, only by using pointwise weak

bisimulations up to
�

' instead of strong low-bisimulations.

1. Define R as the symmetric relation {(C1; C2 , C′
1; C

′
2) | C1

�

' C′
1, C2

�

' C′
2}.

Let (C1; C2 , C′
1; C

′
2) ∈ R and s, t ∈ S be arbitrary with 〈|C1; C2, s|〉 _ 〈|C∗, t|〉

for some C∗ ∈ Com . We make a case distinction on C∗ according to the
operational semantics:
(a) C∗ = C2: From the operational semantics, we see 〈|C1, s|〉 _ 〈|〈〉, t|〉. Since

C1

�

' C′
1, we have 〈|C′

1, s|〉 _
∗ 〈|C′′

1 , t|〉 with 〈〉
�

' 〈|C′′
1 , t|〉. By the second

part of Definition 2, we obtain 〈|C′′
1 , t|〉 _

∗ 〈|〈〉, t|〉 and so we see 〈|C′
1, s|〉 _

∗

〈|〈〉, t|〉. From the operational semantics, we thus see 〈|C′
1; C

′
2, s|〉 _

∗ 〈|C′
2, t|〉

with C2

�

' C′
2 by definition of R.

(b) C∗ = 〈C; C2〉V for some C ∈ Com and possibly empty V ∈ Com . From

the operational semantics, we obtain 〈|C1, s|〉 _ 〈|〈C〉V, t|〉. Since C1

�

' C′
1,

there are C′ ∈ Com and V ′ ∈ Com with 〈|C′
1, s|〉 _

∗ 〈|〈C′〉V ′, t|〉, C
�

' C′

and V
�

' V ′. From the operational semantics we obtain 〈|C′
1; C

′
2, s|〉 _

∗

〈|〈C′; C′
2〉V

′, t|〉 with (C; C2 , C′; C′
2) ∈ R (follows from C

�

' C′, C2

�

' C′
2,

and the definition of R) and V
�

' V ′.

Hence, R is a pointwise weak bisimulation up to
�

'.

2. Define R as the symmetric relation {(fork(CV) , fork(C′V ′)) | C
�

' C′, V
�

'
V ′}. Let (fork(CV) , fork(C′V ′)) ∈ R and s ∈ S be arbitrary. From the opera-
tional semantics, we obtain 〈|fork(CV), s|〉 _ 〈|〈C〉V, s|〉 and 〈|fork(C′V ′), s|〉 _

〈|〈C′〉V ′, s|〉. From the definition of R and Definition 8, we obtain 〈C〉V
�

'
〈C′〉V ′.

Hence, R is a pointwise weak bisimulation up to
�

'.
3. Define R as the symmetric relation

{ (while B do C1 , while B do C′
1), (C1; while B do C2 , C′

1; while B do C′
2)

| C1

�

' C′
1, C2

�

' C′
2}

Let (while B do C1 , while B do C′
1) ∈ R and s, t ∈ S be arbitrary. We make

a case distinction on the value of B in s:
(a) 〈|B, s|〉 ↓ False: From the operational semantics, we get 〈|while B do C1, s|〉 _

〈|〈〉, s|〉 and 〈|while B do C′
1, s|〉 _ 〈|〈〉, s|〉.

(b) 〈|B, s|〉 ↓ True: From the operational semantics, we get 〈|while B do C1, s|〉 _

〈|C1; while B do C1, s|〉 and 〈|while B do C′
1, s|〉 _ 〈|C′

1; while B do C′
1, s|〉 with

(C1; while B do C1 , C′
1; while B do C′

1) ∈ R.

23

Let (C1; while B do C2 , C′
1; while B do C′

2) ∈ R and s ∈ S be arbitrary
with 〈|C1; while B do C2, s|〉 _ 〈|C∗, t|〉 for some C∗ ∈ Com . We make a case
distinction on C∗ according to the operational semantics:

(a) C∗ = while B do C2: From the operational semantics, we obtain 〈|C1, s|〉 _

〈|〈〉, t|〉. Since C1

�

' C′
1 we obtain 〈|C′

1, s|〉 _
∗ 〈|〈〉, t|〉 similar to the se-

quential composition case. From the operational semantics, we obtain
〈|C′

1; while B do C′
2, s|〉 _

∗ 〈|while B do C′
2, t|〉, and (C∗, while B do C′

2) in
R.

(b) C∗ = 〈C; while B do C2〉V for some C ∈ Com and possibly empty V ∈
Com . From the operational semantics, we obtain 〈|C1, s|〉 _ 〈|〈C〉V, t|〉.

Since C1

�

' C′
1, there are C′ ∈ Com and V ′ ∈ Com with 〈|C′

1, s|〉 _
∗

〈|〈C′〉V ′, t|〉, C
�

' C′ and V
�

' V ′. From the operational semantics,
we obtain 〈|C′

1; while B do C′
2, s|〉 _

∗ 〈|〈C′; while B do C′
2〉V

′, t|〉 with

(C; while B do C2 , C′; while B do C′
2) ∈ R (follows from C

�

' C′,

while B do C2

�

' while B do C′
2, and the definition of R), and V

�

' V ′.

Hence, R is a pointwise weak bisimulation up to
�

'.
4. Define R as the symmetric relation {(if B then C1 else C2 , if B then C′

1 else C′
2) |

C1

�

' C′
1, C2

�

' C′
2}.

Let (if B then C1 else C2 , if B then C′
1 else C′

2) ∈ R and s ∈ S be arbitrary.
We make a case distinction on the value of B in s:

(a) 〈|B, s|〉 ↓ False: From the operational semantics 〈|if B then C1 else C2, s|〉 _

〈|C2, s|〉 and 〈|if B then C′
1 else C′

2, s|〉 _ 〈|C′
2, s|〉 follow. By definition of R,

we have C2

�

' C′
2.

(b) 〈|B, s|〉 ↓ True: From the operational semantics 〈|if B then C1 else C2, s|〉 _

〈|C1, s|〉 and 〈|if B then C′
1 else C′

2, s|〉 _ 〈|C′
1, s|〉 follow. By definition of R,

we have C1

�

' C′
1.

Hence, R is a pointwise weak bisimulation up to
�

'.
5. The assertion follows directly from Definition 8.

Proof (of Theorem 2). We prove the first assertion for pointwise weak bisimu-
lations (rather than weak bisimulations) by induction on the term structure of
vectors of length 1, i.e. V ∈ ComV . By Lemma 5(5), the assertion is then lifted
to arbitrary vectors in ComV , and with Lemma 4, we obtain what we wanted.
Let σ, ρ be substitutions that are preserving and ground for V .

1. Suppose V is skip or an assignment. Then σ(V) = ρ(V) = V , and the

assertion follows by reflexivity of
�

'.
2. Suppose V is of the form α; C′ or C′; α. By induction hypothesis we have

σ(C′)
�

' ρ(C′). σ and ρ are preserving and ground for α, so we see σ(α)
�

'

ρ(α). From Lemma 5, σV
�

' ρV follows.
3. Suppose V = C1; C2 with C1, C2 ∈ ComV . By induction hypothesis we have

σC1

�

' ρC1 and σC2

�

' ρC2. From Lemma 5, σV
�

' ρV follows

24

4. Suppose V = while B do C′ with C′ ∈ ComV . By induction hypothesis we

have σC′ �

' ρC′. From Lemma 5, σV
�

' ρV follows.
5. Suppose V = if B then C1 else C2 with C1, C2 ∈ ComV . By induction hy-

pothesis we have σC1

�

' ρC1 and σC2

�

' ρC2. From Lemma 5, σV
�

' ρV

follows.
6. Suppose V = fork(C0〈C1, . . . , Cn〉) with Ci ∈ ComV for i = 0, . . . , n. By

induction hypothesis we have σCi

�

' ρCi for i = 0, . . . , n. From Lemma 5,

we first obtain σ〈C1, . . . , Cn〉
�

' ρ〈C1, . . . , Cn〉 and then σV
�

' ρV .

The second assertion follows from part 1 and the observation that πV ′ = V for
every lifting V ′ of V ∈ MWL.

B.3 Proof of Theorem 3

We first state and prove two lemmas to simplify reasoning with lL on ComV .

Lemma 6. If V1 lL V2 holds for two programs V1, V2 ∈ ComV then σV1 lL

σV2 holds for each substitution σ that is preserving (but not necessarily ground).

Proof. Given an arbitrary substitution η that is preserving and ground for σV1

and σV2, we obtain η(σV1) lL η(σV2) from V1 lL V2, Definition 4, and the fact
that η ◦σ is preserving and ground for V1 and V2. Since η was chosen arbitrarily,
σV1 lL σV2 follows.

Lemma 7. Let V, V ′, V0, V
′
0 , . . . , Vn, V ′

n ∈ ComV be programs that may contain
meta-variables. If Vi lL V ′

i holds for each i ∈ {0, . . . , n} according to Defini-
tion 4 and V lL V ′ can be syntactically derived from the assumptions V0 lL V ′

0 ,
. . . , Vn lL V ′

n with the rules in Figure 1 then V lL V ′ holds according to Defi-
nition 4.

Proof. We argue by induction on the size of D, the derivation of V lL V ′ from
V0 lL V ′

0 , . . . , Vn lL V ′
n.

Base case: If D consists of zero rule applications then V lL V ′ equals one of
the assumptions.

Induction assumption: The proposition holds for all derivations with less than
n rule applications.

Step case: Assume D consists of n rule applications. We make a case distinc-
tion on the last rule applied in D. Here, we consider only the case where [SComp]
is the last rule applied. The cases for the other rules can be shown along the
same lines.

Let C1, C
′
1, C2, C

′
2 ∈ ComV be arbitrary with C1 lL C′

1 and C2 lL C′
2. Let

σ be an arbitrary substitution that is preserving and ground for C1, C
′
1, C2, C

′
2.

From C1 lL C′
1, C2 lL C′

2, and Definition 4 we obtain σC1 lL σC′
1 and σC2 lL

σC′
2. An application of [SComp] (for ground programs) yields (σC1; σC2) lL

(σC′
1; σC′

2). Since σ(C1; C2) = (σC1; σC2), (σC′
1; σC′

2) = σ(C′
1; C

′
2), and σ was

chosen freely, we obtain C1; C2 lL C′
1; C

′
2 from Definition 4.

25

Proof (of Theorem 3). We prove the three propositions in different order.

2. By induction on the height of the given derivation of V ↪→ V ′ : S, one
obtains V ′ = ρV for some preserving substitution ρ. The assertion follows
by applying Theorem 2.1 to σ(V) and (σρ)(V) for an arbitrary σ that is
preserving and ground for both V and V ′.

3. Since V ′ lL S implies V ′
uL S according to Theorem 1, it suffices to show

that V ↪→ V ′ : S implies V ′ lL S. We prove this second proposition by
induction on the minimal height of the given derivation D of V ↪→ V ′ : S.
Base case: D consists of a single rule application. We perform a case distinc-
tion on this rule:
[Var] We have V = V ′ = S = α for some meta-variable α ∈ V . Let σ

be an arbitrary substitution that is preserving and ground for α. As σα is a
command in StutV that is free of meta-variables (i.e. a sequential composition
of skip statements), we obtain σα lL σα from [Skip] and [SeqComp] in
Figure 1. Hence, α lL α holds.
[Skp] We have V = V ′ = S = skip. From [Skip] in Figure 1, we obtain
skip lL skip.
[Assh] We have V = V ′ = Id :=Exp and S = skip with Id : high . From [SHA2]
in Figure 1, we obtain Id :=Exp lL skip.
[Assl] We have V = V ′ = S = Id :=Exp with Id : low and Exp : low . From
[LA] in Figure 1, we obtain Id :=Exp lL Id :=Exp.
Induction assumption: For any derivation D′ of a judgment W ↪→ W ′ : S′

with height less than the height of D, W ′ lL S′ holds.
Step case: We make a case distinction on the rule applied at the root of D.
[Seq] We have V = C1; C2, V ′ = C′

1; C
′
2, and S = S1; S2 with C1 ↪→ C′

1 : S1

and C2 ↪→ C′
2 : S2. By induction assumption, C′

1 lL S1 and C′
2 lL S2 hold.

An application of [SComp] in Figure 1 yields C′
1; C

′
2 lL S1; S2.

[Par] We have V = 〈C1, . . . , Cn〉, V ′ = 〈C′
1, . . . , C

′
n〉, and S = 〈S1, . . . , Sn〉

with Ci ↪→ C′
i : Si for all i ∈ {1, . . . , n}. By induction assumption, C′

i lL

Si holds for all i ∈ {1, . . . , n}. Application of [PComp] in Figure 1 yields
〈C′

1, . . . , C
′
n〉 lL 〈S1, . . . , Sn〉.

[Frk] We have V = fork(C1V2), V ′ = fork(C′
1V

′
2), and S = fork(S1S2) with

C1 ↪→ C′
1 : S1 and V2 ↪→ V ′

2 : S2. By induction assumption, C′
1 lL S1 and

V ′
2 lL S2 hold. An application of [Fork] in Figure 1 yields fork(C′

1V
′
2) lL

fork(S1S2).
[Whl] We have V = while B do C1, V ′ = while B do C′

1, and S = while B do S1

with B : low and C1 ↪→ C′
1 : S1. By induction assumption, C′

1 lL S1 holds.
An application of [WL] in Figure 1 yields while B do C′

1 lL while B do S1.
[Condl] We have V = if B then C1 else C2, V ′ = if B then C′

1 else C′
2, and

S = if B then S1 else S2 with B : low , C1 ↪→ C′
1 : S1, and C2 ↪→ C′

2 : S2.
By induction assumption, C′

1 lL S1 and C′
2 lL S2 hold. An application of

[LIte] in Figure 1 yields if B then C′
1 else C′

2 lL if B′ then S1 else S2.
[Condh] We have V = if B then C1 else C2, V ′ = if B then σC′

1 else σC′
2,

and S = skip; σS1 with B : high , C1 ↪→ C′
1 : S1, C2 ↪→ C′

2 : S2, and
σ ∈ U({S1l

?
LS2}). By induction assumption, C′

1 lL S1 and C′
2 lL S2 hold.

26

From Lemma 6, we obtain σC′
1 lL σS1 and σC′

2 lL σS2 as σ is preserving.
Then we obtain σC′

2 lL σS1 from σC′
2 lL σS2, σS1 lL σS2 (follows from

σ ∈ U({S1l
?
LS2})), and the fact that lL is symmetric and transitive. An

application of [SHIte2] in Figure 1 yields if B then σC′
1 else σC′

2 lL skip; σS1.
1. From V ′

uL S and the symmetry of uL, we obtain S uL V ′. Then V ′
uL V ′

follows from the transitivity of uL.

B.4 Proof of Lemma 1

The language PadV is given by the following grammar:

P ::= X | skip | Idh:=Exp | P1; P2

Here X is a placeholder for meta-variables in V , Idh is a placeholder for program
variables in Var with domain high , and P1, P2 are placeholders for commands in
PadV . We define const(C) = |C|skip +

∑
Idh,Exp,Idh:high |C|Idh:=Exp , where |C|D

denotes the number of occurrences of D as a subterm of C.

Proof (of Lemma 1). We show each direction of the implication:
(=⇒) Assume C1 lL C2. Make a case distinction:

1. Assume const(C1) 6= const(C2). Let σ be the substitution mapping all vari-
ables in C1 and C2 to ε. The judgment σC1 lL σC2 is not derivable with the
rules in Figure 1. According to Definition 4, this contradicts the assumption
C1 lL C2 as σ is preserving. Hence, this case is not possible.

2. Assume const(C1) = const(C2) and |C1|α 6= |C2|α for some meta-variable
α ∈ V . Let σ be the substitution mapping α to skip and all other variables in
C1 and C2 to ε. We have const(σC1) 6= const(σC2) and, thus, a contradiction
to the assumption C1 lL C2 (argue like in case 1).

3. Assume const(C1) = const(C2) and |C1|α = |C2|α for all meta-variables
α ∈ V .

The above case distinction is complete as it covers all possible cases. Under the
assumption C1 lL C2, only case 3. is possible. Hence, the implication holds.

(⇐=) The argument is by induction on the number of meta-variables occur-
ring in (C1, C2). Assume const(C1) = const(C2) and ∀α ∈ V : |C1|α = |C2|α.

Base case: No meta-variables occur in (C1, C2). We obtain C1 lL C2 from
const(C1) = const(C2) and C1, C2 ∈ Pad (argue by induction on const(C1)).

Step case: n + 1 meta-variables occur in (C1, C2) and the proposition holds
for all command pairs with n or less meta-variables. Let α′ be an arbitrary vari-
able occurring in C1 (and, hence, also in C2). Let σ be an arbitrary substitution
that is preserving and ground for C1 and C2. We decompose σ into two substi-
tutions σ1, σ2 such that σ = σ2 ◦σ1, dom σ1 = {α′}, and dom σ2 = dom σ\{α′}.
Note that σ1 and σ2 both are preserving. We have |σ1(C1)|α = |C1|α = |C2|α =
|σ1(C2)|α for all α 6= α′. Moreover, we have const(σ1(C1)) = const(σ1(C2)) be-
cause const(C1) = const(C2) and |C1|α′ = |C2|α′ . From the induction assump-
tion (n meta-variables occur in σ(C1), σ(C2)), we obtain σ1(C1) lL σ1(C2). This
means, in particular, σ2(σ1(C1)) lL σ2(σ1(C2)) holds. Since σ = σ2 ◦ σ1 and σ

was chosen freely, we obtain C1 lL C2.

27

B.5 Proof of Theorem 4

Proof (Sketch). The proof of assertion 1 is a straightforward inductive argument
over the structure of the derivation of V ⇀ V and an inspection of each rule in
Figure 3.

To simplify the argument in the proof of part 2, we introduce the auxiliary
language MglV , defined by

L ::= P t | P t; Id l:=Exp; L | P t; if B then L1 else L2; L
| P t; while B do L1; L | P t; fork(L1V); L

where Id l is a placeholder for program variables in Var with domain low ,
L, L1, L2 are placeholders for commands in MglV , V is a placeholder for a com-
mand vector in MglV , and P t is a placeholder for a command of the form X or
of the form P ; X with P ∈ PadV .

The theorem follows immediately from:

(a) U({V ′
1l?

LV ′
2}) 6= ∅ implies U({V ∗

1 l?
LV ∗

2 }) 6= ∅ for all liftings V ∗
1 , V ∗

2 ∈ MglV

of V1, V2 such that (V ∗
1 , V ∗

2) does not share meta-variables with (V ′
1 , V ′

2) and
each meta-variable occurs at most once in (V ∗

1 , V ∗
2).

(b) U({V ′
1l?

LV ′
1}) 6= ∅ implies U({V ∗

1 l?
LV ∗

1 }) 6= ∅ for all liftings V ∗
1 ∈ MglV

of V1 such that V ∗
1 does not share meta-variables with V ′

1 and each meta-
variable occurs at most once in V ∗

1 .
(c) V1 and V2 are in the language MglV and each meta-variable occurs at most

once in (V1, V2).

These propositions are implied by Lemmas 8, 9, and 10, respectively, that we
present in the following.

Lemma 8. Let Vi ∈ Com, with liftings V ′
i ∈ ComV and V ∗

i ∈ MglV for i =
1, 2. Furthermore, assume every meta-variable occurs at most once in (V ∗

1 , V ∗
2)

and that V ∗
1 and V ∗

2 do not share meta-variables with V ′
1 and V ′

2 . Then we have

U({V ′
1l?

LV ′
2}) 6= ∅ ⇒ U({V ∗

1 l?
LV ∗

2 }) 6= ∅

More precisely, we can find ρ ∈ U({V ∗
1 l?

LV ∗
2 }) with dom(ρ) ⊆ var(V ∗

1) ∪
var (V ∗

2).

Proof. Suppose σ is a preserving substitution with σV ′
1 lL σV ′

2 . We will in-
ductively construct preserving substitutions ρ1 with ρ1V

∗
1 lL σV ′

1 , and ρ2 with
ρ2V

∗
2 lL σV ′

2 with the property dom(ρi) ⊆ var(V ∗
i) for i = 1, 2. The meta-

variables in V ∗
1 and V ∗

2 are disjoint, so ρ = ρ1 ∪ ρ2 is well–defined and a unifier
of V ∗

1 l?
LV ∗

2 because of ρV ∗
1 lL σV ′

1 lL σV ′
2 lL ρV ∗

2 . We prove the assertion by
induction on the term structure of V ∗

1 ∈ MglV , starting with V ∗
1 = C∗

1 ∈ MglV
and hence V1 = C1 ∈ Com and V ′

1 = C′
1 ∈ ComV .

Suppose C∗
1 ∈ PadV∩MglV . Then by definition of MglV , C∗

1 contains at least
one meta-variable α. C′

1 is also a lifting of C1, so it must be in PadV ∪ {ε}. Let
α1, . . . , αn be the meta-variables in C′

1. Define ρ(α) := σ(α1); . . . ; σ(αn), and

28

set ρ(Y) = ε for all Y 6= α occuring in C∗
1 . C∗

1 and C′
1 are both liftings of C1,

so they contain the same number of skips and assignments to high variables. By
definition of ρ we see that σC′

1 and ρC∗
1 contain the same meta-variables and the

same number of constants. Using the calculus in Figure 1 in combination with
Lemma 1 we can conclude that ρC∗

1 lL σC′
1. Furthermore, dom(ρ) ⊆ var (C∗

1)
is satisfied.

Suppose C∗
1 = P ; if B then C∗

1,1 else C∗
1,2; C

∗. The command C′
1 is also a

lifting of C1, so it has the structure P ′; if B then C′
1,1 else C′

1,2; C
′, with (possibly

empty) commands P ′, C′.
If B is a low conditional, we inductively construct substitutions ρ1, ρ2, ρ3, ρ4

such that ρ1P lL σP ′, ρ2C
∗
1,1 lL σC′

1,1, ρ3C
∗
1,2 lL σC′

1,2 and ρ4C
∗ lL σC′.

The domains of the ρi are disjoint by the hypothesis that dom(ρi) is a subset of
the meta-variables of the corresponding subcommand and the assumption that
every meta-variable occurs only once in C∗

1 , so ρ = ρ1∪ρ2∪ρ3∪ρ4 is well-defined.
Using Lemma 7 we can conclude ρC∗

1 = ρ1P ; if B then ρ2C
∗
1,1 else ρ3C

∗
1,2; ρ4C

∗ lL

σP ′; if B then σC′
1,1 else σC′

1,2; σC′ lL σC′
1. Furthermore, dom(ρ) ⊆ var(C∗

1) is
satisfied.

If B is a high conditional, the precondition σC′
1 lL σC′

2 together with the
definition of lL on high conditionals shows that σC′

1,1 lL σC′
1,2 holds. Apply-

ing induction hypothesis we obtain ρ2,1 and ρ2,2 with ρ2,1C
∗
1,1 lL σC′

1,1 lL

σC′
1,2 lL ρ2,2C

∗
1,2 and ρ1, ρ3 with ρ1P lL σP ′ and ρ3C

∗ lL σC′. With
ρ = ρ1∪ρ2,1∪ρ2,2∪ρ3 we have ρC∗

1 = ρ1P ; if B then ρ2,1C
∗
1,1 else ρ2,2C

∗
1,2; ρ3C

∗ lL

ρ1P ; skip; ρ2,1C
∗
1,1; ρ3C

∗ lL σP ′; skip; σC′
1,1; σC′ lL σP ′; if B then σC′

1,1 else σC′
1,2; σC′ lL

σC′
1. Furthermore, dom(ρ) ⊆ var(C∗

1) is satisfied.
The remaining induction steps for MglV and the lifting to MglV can be

treated in the same way as the low conditional case.

Lemma 9. Let V ∈ Com, with liftings V ′ ∈ ComV and V ∗ ∈ MglV . Further-
more, assume every meta-variable occurs at most once in V ∗ and that V ∗ does
not share meta-variables with V ′. Then we have

U({V ′l?
LV ′}) 6= ∅ ⇒ U({V ∗l?

LV ∗}) 6= ∅.

Proof. We will inductively construct ρ with ρV ∗l?
LρV ∗ and dom(ρ) ⊆ var(V ∗),

starting with V ∗ = C∗ ∈ MglV and V ′ = C′ ∈ ComV

Suppose C∗ ∈ PadV . Then the identity is in U({C∗l?
LC∗}).

Suppose C∗ = P ; l:=Exp; C∗
1 . C′ is also a lifting of C, so C′ = P ′; l:=Exp; C′

1

with possibly empty P ′, C′. From σC′ lL σC′, and the definition of lL we know
that Exp : low and U({C′

1l
?
LC′

1}) 6= ∅. We apply induction hypothesis to obtain
ρ ∈ U({C∗

1l?
LC∗

1). By Lemma 7 we obtain ρC∗ lL ρC∗.
Suppose C∗ = P ; if B then C∗

1 else C∗
2 ; C∗

3 with B : low . C′ is also a lifting of C,
so C′ = P ′; if B then C′

1 else C′
2; C

′
3. From σC′ lL σC′, and the definition of lL

we know that U({C′
il

?
LC′

i}) 6= ∅ for i = 1, 2, 3. We apply induction hypothesis
to obtain ρi ∈ U({C∗

i l?
LC∗

i }) for i = 1, 2, 3. ρ = ρ1 ∪ ρ2 ∪ ρ3 is well–defined as
the domains are pairwise disjoint, and ρ ∈ U({C∗l?

LC∗}).

29

Suppose C∗ = P ; if B then C∗
1 else C∗

2 ; C∗
3 with B : high . We then know that

C′ = P ′; if B then C′
1 else C′

2; C
′
3 because both C′ and C∗ are liftings of C. From

σC′ lL σC′, and the definition of lL we have σC′
1 lL σC′

2. By Lemma 8 we
obtain ρ1 with ρ1C

∗
1 lL ρ1C

∗
2 . (Note that every meta-variable occurs at most

once in (C∗
1 , C∗

2).) Applying induction hypothesis to P and C∗
3 we obtain ρ0

with ρ0P lL ρ0P and ρ2 with ρ2C
∗
3 lL ρ2C

∗
3 . With ρ = ρ0 ∪ ρ1 ∪ ρ2 we have

ρC∗ lL ρC∗, which is what we wanted. The remaining induction steps for MglV
and the lifting to MglV can be treated in the same way as the low conditional
case.

Lemma 10. Let V ∈ Com and V ∈ ComV . If we have V ⇀ V , then V ∈
MglV and every meta-variable occurs at most once in V .

Proof. By induction on the term structure of V ∈ Com : First, suppose V =
C ∈ Com . If C = skip, we have C ⇀ skip; X , which is in MglV . The same
holds for C = h:=Exp. If C = l:=Exp, we have C ⇀ X ; l:=Exp; Y , which is
in MglV . If C = while B do C′, we have C ⇀ C = X ; while B do C′; Y with
C′ ⇀ C′. By induction hypothesis, C′ ∈ MglV , and by definition of MglV we
have C ∈ MglV . If C = fork(C′V) , we have C ⇀ C = X ; fork(C′V); Y with
C′ ⇀ C′ and V ⇀ V . By induction hypothesis, C′ ∈ MglV , and V ∈ MglV
and by definition of MglV we have C ∈ MglV . If C = if B then C1 else C2,
we have C ⇀ C = X ; if B then C1 else C2; Y with C1 ⇀ C1 and C2 ⇀ C2.
By induction hypothesis, C1, C2 ∈ MglV , and by definition of MglV we have
C ∈ MglV . Suppose now C = C1; C2. Let C1 ⇀ C1, and let C2 ⇀ C2. By
induction hypothesis C1, C2 ∈ MglV . As C1 ∈ MglV , we can write it as (implicit
induction on MglV) C1 = C′

1; P ; X for a maximal P ∈ PadV and X ∈ V . Observe
that P ; C2 ∈ MglV , and thus C′

1; P ; C2 ∈ MglV . This is what we wanted, as we
have C1; C2 ⇀ C′

1; P ; C2.
If V = 〈C1, . . . , Cn〉 ∈ Com , we have V ⇀ V = 〈C1, . . . , Cn〉 with Ci ⇀ Ci

for i = 1, . . . , n. By induction hypothesis, C1, . . . , Cn ∈ MglV , and thus V ∈
MglV . The assertion that each meta-variable occurs at most once follows from
the requirement that each meta-variable inserted while lifting must be fresh.

B.6 Proof of Lemma 2

Proof. We prove a stronger assertion. In addition to the statement of Lemma 2
we prove that dom(η) ∪ var (ran(η)) ⊆ var(V1) ∪ var(V2), and that dom(η) ∩
var (ran(η)) = ∅ hold, where var (V) denotes the set of all meta-variables occur-
ring in V . We proceed by structural induction on the derivation tree D of the
judgment V1l

?
LV2 :: η.

If D consists of an application of the rule [Var1] we have V1 = α and V2 = C.
The assertion follows, as α does not occur in var(C) by assumption. If D consists
of an application of the rule [Asg] the assertion follows directly by definition of
lL. If the root of D is an application of rule [Seq1], we have V1 = α; C1 and V2 =
C2, and C1l

?
LC2 :: η. By hypothesis, ηC1 lL ηC2 holds. η[α\ε]α; C1 = ηC1 lL

ηC2 lL η[α\ε]C2, as α does not occur in C1, C2. [Seq ′
1] follows similarly. If the

30

root of D is an application of rule [Seq2], we have V1 = skip; C1 and V2 = skip; C2,
and C1l

?
LC2 :: η. By hypothesis, ηC1 lL ηC2 holds. Then, by Lemma 7 we also

have η(skip; C1) lL η(skip; C2). If the root of D is the application of [Ite], we have
V1 = if B1 then C1 else C2 and V2 = if B2 then C′

1 else C′
2, together with B1 ≡ B2

and C1l
?
LC′

1 :: η1, C2l
?
LC′

2 :: η2. By hypothesis we have ηi ∈ U({Cil
?
LC′

i}), and
dom(ηi)∪ var(ran(ηi)) ⊆ var (Ci)∪ var(C′

i) for i = 1, 2. As (var (C1)∪ var(C′
1))

and (var (C2) ∪ var(C′
2)) are disjoint by hypothesis, η = η1 ∪ η2 is well-defined

and dom(η) ∪ var(ran(η)) ⊆ var(V1) ∪ var (V2) and dom(η) ∩ var (ran(η)) = ∅
hold. With the help of Lemma 7 we see that η is indeed a unifier.

The remaining cases can be proved along the same lines.

B.7 Proof of Theorem 5

The proof of Theorem 5 proceeds via the following landmarks, where the lan-
guage MglV is defined like in Appendix B.5.

(a) If C1, C2 ∈ MglV , if every meta-variable occurs at most once in (C1, C2)
and if U({C1l

?
LC2}) 6= ∅ and Ci ↪→′ C′

i : Si for i = 1, 2, then S1, S2 ∈
MglV ∩ SliceV , S1

.
= S2 and every meta-variable occurs at most once in

(S1, S2).
(b) If S1, S2 ∈ MglV ∩ SliceV and S1

.
= S2 then there is an η with S1l

?
LS2 :: η.

We first show in full detail how Theorem 5 can be inferred from the above propo-
sitions. Then we give the definition of the relation

.
= and justify the propositions

with Lemmas 12 and 11.

Proof (of Theorem 5:).

1. Let W be an arbitrary lifting of V . From Theorem 4 follows that σW lL σW

implies U(V lL V) 6= ∅. From Lemma 10 we see that V ∈ MglV and that
every meta-variable occurs at most once in V .
Restricting ourselves to commands in ComV for the moment and substituting
C for V , it suffices to show the assertion

∃σ.σC lL σC ⇒ C ↪→′ C′ : S

for all C ∈ MglV where every meta-variable occurs at most once. We proceed
by induction on the term structure of C.
If C ∈ PadV , we always have C ↪→′ C′ : S.
If C = P ; Id l:=Exp; C1, and σC lL σC, then we have σP lL σP and
σC1 lL σC1 and Exp : low by definition of lL. By applying induction
hypothesis we obtain P ↪→′ P ′ : S0 and C1 ↪→′ C′

1 : S1. By definition of ↪→′

this implies C ↪→′ P ′; Id l:=Exp; C′
1 : S0; Id l:=Exp; S1.

If C = P ; if B then C1 else C2; C3 with B : low , and σC lL σC, then we have
σP lL σP and σCi lL σCi for i = 1, 2, 3. By applying induction hypothesis
we obtain P ↪→′ P ′ : S0 and Ci ↪→′ C′

i : Si for i = 1, 2, 3. By definition of
↪→′ this implies C ↪→′ P ′; if B then C′

1 else C′
2; C

′
3 : S0; if B then S1 else S2; S3

31

P, P ′ ∈ StutV ∪ {ε}

P
.
= P ′

P, P ′ ∈ StutV ∪ {ε} C
.
= C′ Id : low Exp1 ≡ Exp2

P ; Id :=Exp1; C
.
= P ′; Id :=Exp2; C

′

P, P ′ ∈ StutV ∪ {ε} C1
.
= C′

1 C2
.
= C′

2 B1 ≡ B2

P ;while B1 do C1; C2
.
= P ′;while B2 do C′

1; C
′
2

P, P ′ ∈ StutV ∪ {ε} C1
.
= C′

1 C2
.
= C′

2 V
.
= V ′

P ; fork(C1V); C2
.
= P ′; fork(C′

1V
′); C′

2

P, P ′ ∈ StutV ∪ {ε} Ci

.
= C′

i i = 1, 2, 3 B1 ≡ B2

P ; if B1 then C1 else C2; C3
.
= P ′; if B2 then C′

1 else C′
2; C

′
3

C1
.
= C′

1, . . . , Cn

.
= C′

n

〈C1, . . . , Cn〉
.
= 〈C′

1, . . . , C
′
n〉

Fig. 7. Resembling Commands

If C = P ; if B then C1 else C2; C3 with B : high , and σC lL σC, then
we have σP lL σP and σCi lL σCi for i = 1, 3. Furthermore we have
σC1 lL σC2, from which we get σC2 lL σC2 by transitivity and symmetry
of lL. Induction hypothesis yields P ↪→′ P ′ : S0 and Ci ↪→′ C′

i : Si for
i = 1, 2, 3. Every meta-variable occurs at most once in C, hence the same
holds true for the subterms C1, C2.
Proposition (a) shows that S1, S2 ∈ MglV ∩ SliceV and S1

.
= S2 and that

every meta-variable occurs at most once in (S1, S2). Proposition (b) implies
that there is η with S1l

?
LS2 :: η. η is a unifier of S1, S2, as Lemma 2 shows.

We conclude C ↪→′ P ′; if B then ηC′
1 else ηC′

2; C
′
3 : S0; skip; ηS1; S3, which is

what we wanted.
The cases for the other constructors follow along the same lines as the low
conditional. The assertion can then simply be lifted to command vectors.

2. By a straightforward induction over the derivation tree it follows that W ↪→
W ′ : S implies W ′ = σW for a preserving substitution σ. In the proof of
Theorem 3 it was shown that S lL W ′ holds. By symmetry and transitivity
of lL we obtain σW lL σW . The assertion now follows directly from part
1. of Theorem 5.

To simplify the atomic treatment of subcommands in StutV of commands in
SliceV in inductive arguments, we introduce the language Slice+

V . (Note the re-
semblance to the definition of MglV). Define the set Slice+

V by the grammar:

L ::=P | P ; Id l:=Exp; L | P ; if B then L1 else L2; L
| P ; while B do L1; L | P ; fork(L1V); L

where L, L1, L2 are placeholders for commands in Slice+

V , V is a placeholder for a

command vector in Slice
+

V
, and P is a placeholder for a command in StutV∪{ε}.

By a straightforward induction one proves that SliceV ⊆ Slice+

V .

Definition 10. The binary relation
.
= on Slice

+

V
is defined as the reflexive,

symmetric and transitive closure of the relation inductively defined in Figure 7.
We call commands V, V ′ ∈ MglV with V

.
= V ′ resembling.

Lemma 11. If S1, S2 ∈ MglV ∩ SliceV and S1
.
= S2 then there is an η with

S1l
?
LS2 :: η.

32

Proof. By induction on the term structure of S1:
Suppose S1 ∈ StutV . Then by definition of

.
=, S2 must also be in StutV .

S1, S2 ∈ MglV , hence they have terminal meta-variables. A simple induction on
the length of S1 shows that S1 lL S2 :: η is derivable.

Suppose S1 = P1; if B1 then S1,1 else S1,2; S1,3, where P1, S1,1, S1,2, S1,3 are
elements of MglV ∩ SliceV . By definition of

.
= and MglV we know that S2 =

P2; if B2 then S2,1 else S2,2; S2,3 with P2, S2,1, S2,2, S2,3 ∈ MglV ∩ SliceV and
P1

.
= P2, S1,i

.
= S2,i for i = 1, 2, 3, and B1 ≡ B2. We apply induction hypothesis

and obtain P1l
?
LP2 :: σ0, and S1,il

?
LS2,i :: σi for i = 1, 2, 3. We can conclude

S1l
?
LS2 :: σ with σ =

⋃3

i=0
σi by definition of the unification calculus.

The other cases follow along the same lines.

Lemma 12. 1. If C ∈ MglV with C ↪→′ C′ : S and if every meta-variable
occurs at most once in C, then S ∈ MglV ∩SliceV and var (S) ⊆ var (C) and
every meta-variable occurs at most once in S.

2. If C1, C2 ∈ MglV with U({C1l
?
LC2}) 6= ∅ and Ci ↪→′ C′

i : Si for i = 1, 2,
then S1

.
= S2.

Proof. 1. It is easy to see that S ∈ SliceV holds, so we concentrate on contain-
ment in MglV . We proceed by induction on the term structure of C ∈ MglV .
Suppose C ∈ PadV ∩ MglV . By definition of MglV , C has a terminal meta-
variable. Then clearly S ∈ MglV as it contains a terminal meta-variable and
no assignments. The condition on the meta-variables is fulfilled.
Suppose now C = P ; if B then C1 else C2; C3 with B : low and C ↪→′ C′ : S.
Then by definition of ↪→′ we have P ↪→′ P ′ : S0, C1 ↪→′ C′

1 : S1, C2 ↪→′

C′
2 : S2 and C3 ↪→′ C′

3 : S3. By induction hypothesis, S0, S1, S2, S3 ∈ MglV
and the condition on the meta-variables holds. By definition of MglV S =
S0; if B then S1 else S2; S3 ∈ MglV , and the condition on the meta-variables
follows.
Suppose now C = P ; if B then C1 else C2; C3 with B : high . We have
C ↪→′ C′ : S, so by definition of ↪→′ we have P ↪→′ P ′ : S0, C1 ↪→′

C′
1 : S1, C2 ↪→′ C′

2 : S2 and C3 ↪→′ C′
3 : S3 and also S1 lL S2 :: η

for some η. By induction hypothesis, S1, S2, S3 ∈ MglV and the condition
on the meta-variables holds. As var(Si) ⊆ var (Ci), (S1, S2) contains ev-
ery meta-variable at most once. With Lemma 13 we see that ηS1 ∈ MglV ,
and every meta-variable occurs at most once in ηS1. From the proof of
Lemma 2 it follows that dom(η) ∪ ran(var (η)) is a subset of the meta-
variables in S1 and S2 and hence the condition on the meta variables is
fulfilled for S = (S0; skip; ηS1); S3. S0; skip ∈ StutV , and so by the definition
of MglV , S0; skip; ηS1 ∈ MglV . By a straightforward induction one shows
that D1; D2 ∈ MglV whenever D1, D2 ∈ MglV , and so we conclude that
S = (S0; skip; ηS1); S3 ∈ MglV .
The cases for the other constructors follow along the same lines as the low
conditional.

2. Therefore let σC1 lL σC2. By symmetry and transitivity of lL we conclude
σC1 lL σC1 and σC2 lL σC2. With help of Lemma 15 we obtain C′′

1 , C′′
2 ∈

33

SliceV with S1
.
= C′′

1 lL σC1 lL σC2 lL C′′
2

.
= S2. Lemma 14 shows that

C′′
1 lL C′′

2 implies C′′
1

.
= C′′

2 , and by transitivity of
.
= we get S1

.
= S2.

Lemma 13. If S1, S2 ∈ MglV ∩ SliceV with S1 lL S2 :: η and if every variable
occurs at most once in (S1, S2) then ηS1, ηS2 ∈ MglV ∩ SliceV and every meta-
variable occurs at most once in ηS1.

Proof. We prove the assertion by induction on the term structure of S1.
Suppose S1 ∈ StutV . Only the rules [Var1],[Var2],[Seq1], [Seq ′

1] and [Seq2]
apply, so S2 ∈ StutV . From S1, S2 ∈ MglV we see that both commands contain
a terminal variable. The two base cases for the derivation, [Var1] and [Var2]
map the terminal variable at the end of one command to the end of the other
command. With this definition of η we see that both ηS1 and ηS2 have terminal
variables and hence are elements of MglV ∩ SliceV . As (S1, S2) contains every
meta-variable only once, the same holds for ηS1.

Suppose S1 = P1; if B1 then S1,1 else S1,2; S1,3 with B : low . From S1l
?
LS2 :: η

and definition of the rules [Ite] [Seq3] and [Seq4] in Figure 4 it follows that
S2 = P2; if B2 then S2,1 else S2,2; S2,3 with B1 ≡ B2 and that P1l

?
LP2 ::

η0, S1,1l
?
LS2,1 :: η1, S1,2l

?
LS2,2 :: η2, and S1,3l

?
LS2,3 :: η3 are derivable.

By induction hypothesis have η0P1, η1S1,1, η2S1,2, η3S1,3 ∈ MglV ∩ SliceV .
With η = η0 ∪ η1 ∪ η2 ∪ η3 and the fact that the domains and variable ranges
of the ηi are mutually disjoint (see the proof of Lemma 2) we have ηS1 =
η0P1; if B1 then η1S1,1 else η2S1,2; η3S1,3, which is in MglV ∩ SliceV and contains
every meta-variable at most once.

All other constructors can be treated in the same way as the low conditional.

Lemma 14. Let S1, S2 ∈ SliceV . Then we have

S1 lL S2 ⇒ S1
.
= S2.

Proof. We proceed by induction on the structure of S1, where we make use of
the fact that SliceV ⊆ Slice+

V . If S1 ∈ StutV , then by definition of lL and the
precondition S2 ∈ SliceV we know that S2 ∈ StutV , and hence S1

.
= S2. If

S1 = P1; if B1 then S1,1 else S1,2; S1,3 with B1 : low , then by definition of lL we
know that S2 = P2; if B2 then S2,1 else S2,2; S2,3 with P1, P2 = ε or P1 lL P2,
and S1,i lL S2,i for i = 1, 2, 3 and B1 ≡ B2. By definition of

.
=, P1

.
= P2 holds,

and by induction hypothesis we see S1,i
.
= S2,i for i = 1, 2, 3. By definition of

.
=

we conclude S1
.
= S2. The other constructors follow in a similar fashion.

Lemma 15. Let C ∈ MglV with σ ∈ U({C lL C}) and C ↪→′ C′ : S. Then
there is C′′ ∈ SliceV with C′′ lL σC and C′′ .

= S.

Proof. We proceed by structural induction on C ∈ MglV .
Suppose C ∈ PadV . Choose C′′ as σC, where all assignments to high variables

are replaced by skips. We have C′′ ∈ StutV . We also have S ∈ StutV , and so
C′′ .

= S.
Suppose C = P ; if B then C1 else C2; C3 with B : low . We have σC lL σC,

so by definition of lL we obtain σP lL σP and σCi lL σCi for i = 1, 2, 3.

34

From the precondition C ↪→′ C′ : S and the definition of ↪→′ we get P ↪→′

P ′ : S0 and Ci ↪→′ C′
i : Si for i = 1, 2, 3. We apply induction hypothesis to

the corresponding command-pairs and obtain P ′′, C′′
i with P ′′ lL σP , P ′′ .

=
S0, and C′′

i lL σCi, C′′
i

.
= Si for i = 1, 2, 3. Then we can conclude C′′ =

P ′′; if B then C′′
1 else C′′

2 ; C′′
3 lL σC, as well as C′′ .

= S.
Suppose C = P ; if B then C1 else C2; C3 with B : high. We have σC lL σC,

so by definition of lL we obtain σP lL σP , σC1 lL σC1 σC3 lL σC3 and
σC1 lL σC2. By symmetry and transitivity of lL we conclude σC2 lL σC2.
From the precondition C ↪→′ C′ : S and the definition of ↪→′ we get P ↪→′

P ′ : S0 and Ci ↪→′ C′
i : Si for i = 1, 2, 3. We apply induction hypothesis to the

corresponding command-pairs and obtain P ′′, C′′
i with the desired properties for

i = 1, 2, 3. Define C′′ as P ′′; skip; C′′
1 ; C′′

3 ∈ SliceV . We have C′′ lL σC by Lemma
7. On the other hand, S = S0; skip; ηS1; S3 for some preserving substitution η.
We are left to show S

.
= C′′. From hypothesis we know C′′

1

.
= S1 and C′′

3

.
= S3. A

straightforward induction shows that S1
.
= ηS1 for every preserving η. Another

straightforward induction shows that
.
= is a congruence with respect to sequential

composition and so we conclude C′′ = P ′′; skip; C′′
1 ; C′′

3

.
= S0; skip; ηS1; S3 = S.

The other constructors follow along the same lines as the low conditional.

35

