
Diploma Thesis

Interrupt-Related Covert Channels

from an Attacker’s Perspective

Richard Gay

December 1, 2008

RWTH Aachen University

Department of Computer Science

1st Assessor: Prof. Dr.-Ing. Heiko Mantel (TU Darmstadt)
2nd Assessor: Prof. Dr. Ir. Joost-Pieter Katoen (RWTH Aachen)

iii

Erklärung

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Aachen, 1. Dezember 2008

Richard Gay

iv

v

Abstract

Interrupt-related covert channels allow two processes running on a single system to com-
municate with each other, circumventing the security mechanisms contained in standard
operating systems. These channels belong to the class of timing channels and use the CPU
as their shared resource. They transmit information by a sender process executing an op-
eration that induces a hardware interrupt, and a receiver process detecting the interrupt.
Both ends of the channel thus do not exploit that they share the CPU, but rather that
the receiver and sender-initiated interrupts share the CPU. Consequently this channel is in
general not prohibited by time-partitioning the CPU among all processes, as the literature
about timing channels suggests.

This thesis contributes to the understanding of interrupt-related covert channels with the
practical implementation of an exploit that is able to transmit information through such a
channel. A patch for the Linux O(1) scheduler is developed which provides a reasonable
environment for the exploit. Based on the exploit implementation, a theoretical model
is constructed with whose help upper bounds for the implemented channel’s bandwidth
are computed. In addition, practical experiments are conducted on a standard computer,
running the modified Linux kernel, to obtain also lower bounds for the bandwidth.

The implemented exploit contains free parameters, whose values are shown to have a sig-
nificant influence on the performance of the channel. For configuring the exploit tailored to
a given target system, a generic framework is constructed that captures the interdependen-
cies between the system, the exploit and the expected resulting bandwidth. An application
of the framework to a concrete computer system demonstrates its benefit for an attacker.
Since noise is difficult to model precisely and often unknown to an attacker, techniques are
presented that reduce its impact on the channel.

vi

Acknowledgments

First and foremost, I would like to thank Henning Sudbrock for introducing me to the topic
of interrupt-related covert channels and supporting me with his advice during the course of
this work. I am as well indebted to Prof. Heiko Mantel, who gave me the opportunity of
writing this thesis under his supervision and whose suggestions helped me not to lose sight
of the “big picture.”

I want to express my gratitude to my parents for their support during the work on this
thesis (including paying the electricity bills . . .).

Finally I also want to thank all the unnamed persons that were and are involved in devel-
oping the free and open source software that I used for the work on this thesis. Particularly,
without the availability of an open source operating system, an important part of this thesis
would not have been possible.

Contents

1. Introduction 1

1.1. Structure . 2

1.2. Conventions . 2

1.3. Communication Channels . 3

1.4. Information Theory . 5

1.5. The Testing Environment . 7

2. The Exploit 11

2.1. Fixed Quantum Scheduling . 14

2.1.1. Choice of Operating System & Scheduler 16

2.1.2. Scheduler Modifications . 17

2.2. Adaptation of the Exploit . 23

2.2.1. Fixed-Quantum Compatibility . 23

2.2.2. Higher Transmission Rates . 24

2.2.3. Parameters . 25

3. Analysis 27

3.1. Basic Channel Model . 27

3.2. Transmission Models . 29

3.2.1. Lossless Transmission . 30

3.2.2. Lossy Transmission . 30

3.3. Adjusting Exploit Parameters . 36

3.3.1. A Generic Framework . 40

3.3.2. A Concrete Instance . 47

3.3.3. Applicability & Limitations . 53

3.4. False Positives . 54

3.4.1. Classification of Noise . 55

3.4.2. Incorporating Interruption Times . 56

3.4.3. Generating Multiple Interrupts . 58

4. Conclusion 61

4.1. Novel Countermeasures . 61

4.2. Surprises . 62

4.3. Related Work . 63

4.4. Summary . 64

4.5. Outlook . 65

viii Contents

A. Proofs 67

A.1. Lossy Noiseless Transmission . 67
A.2. Thresholds . 69
A.3. Hamming Bit Error Rate . 71
A.4. Generic Framework . 72

B. Source Code 75

B.1. Adapted Exploit . 75
B.1.1. Sender Implementation . 76
B.1.2. Receiver Implementation . 83
B.1.3. Original Exploit . 90

B.2. Modified FreeBSD Scheduler . 91

Bibliography 95

Index 99

1. Introduction

At the time of writing this thesis, even low-cost personal computers have the storage capacity
for several hundred gigabytes of data. For a convenient handling of such large amounts of
data, they are equipped with UDMA or Serial ATA hard disks, several USB 2.0 ports and
Fast or even Gigabit Ethernet connectors, where each of the underlying protocols supports
for transmission rates from a hundred million to more than a billion of bits per second.1

Furthermore, the majority of German households has broadband access to the Internet and
thereby usually more than a million of bits per second of “downstream” transfer speed
[Smi07].

The demand for high transmission rates to quickly exchange large amounts of data nev-
ertheless does not make the analysis of communication channels with low capacities become
obsolete. As soon as, for example, encryption is used to ensure confidentiality and/or in-
tegrity, rather small amounts of data are of particular importance: Passwords and private
keys. Usual passwords are short and not randomly chosen from the available character set
(e.g. ASCII), so they probably often do not exceed 100 bits of information. Private keys are
longer, but currently still in the range of few kilobits in size. Thus, even using a compara-
tively very slow channel of 1 bit per second, the transmission of such a password or private
key would take less than few hours. For an attacker hoping to decrypt confidential data or
forge the authenticity of data, these few hours could be worth the effort. Consequently, if an
attacker somehow accomplished to infiltrate the target system with a program – the sender
– that can access the secret data, then even a slow channel might suffice for this sender to
transmit the data to the attacker.

In [MS07] and [MS08], Mantel and Sudbrock describe and analyze the class of interrupt-
related covert channels, which will later be introduced in detail. These channels are estab-
lished between two processes on a single computer and have the property of circumventing
the security measures found in “normal” computers and operating systems, which is why
they constitute a potential threat to secrets stored on such a system. With their model for
analyzing the bandwidth of such channels, the articles adopt the point of view of a potential
victim, who does not know what an attacker may be able to practically realize, and there-
fore assumes the worst case: A powerful attacker who is, if at all, subject to only minimal
restrictions. Accordingly, the outcomes of the model – up to 50 bit/s in one example of
[MS08] – constitute upper bounds on the transmission rate that might not be reachable by
a realistic attacker.

This thesis therefore assumes an attacker’s perspective for analyzing interrupt-related
covert channels: Just like an attacker finally has to commit to a concrete implementation
of a channel, also this thesis chooses a (rather simple) transmission model as the basis
for an implementation and its theoretical and practical analysis. The evaluation of the
implementation will not only show that interrupt-related covert channels are practically

1UDMA133: 133MB/s, SATA/150: 1.5Gbit/s, USB 2.0: 480Mbit/s, Fast Ethernet: 100Mbit/s, Gigabit
Ethernet: 1Gbit/s.

2 1. Introduction

possible but can also give lower bounds on the reachable bandwidth and allows for analyzing
the influence of the system environment on these channels.

What this thesis does explicitly not cover is the preparatory work that an attacker has to
accomplish to gain access to secret data, like for instance with a Trojan horse. Analogously
it does also not talk about how the receiving process could deliver the secret data to the
actual person interested in it. In particular, this thesis and all depicted source code does not
intend to represent a guide, motivation or template for unlawfully breaking into computer
systems and stealing confidential data.

1.1. Structure

The content of this thesis is split into two main parts. The first, found in Chapter 2,
covers the implementational aspects of an interrupt-related covert channel. It includes
not only the actual exploit realizing such a channel but also a modification of the Linux
operating system that establishes a reasonable environment for this exploit. After that,
Chapter 3 examines the performance of the chosen exploit implementation in a theoretical
model and with practical experiments. The chapter also provides a framework for finding
exploit configurations tailored to a given target system, and shows techniques for reducing
the impact of noise on the implemented channel.

The remainder of this first chapter mainly provides the reader with the background knowl-
edge required to understand interrupt-related covert channels and how communication chan-
nels can be formally analyzed. At the end of this chapter also the setting is introduced which
has been used for the practical evaluation of the exploit.

The fourth chapter concludes the thesis. It presents findings that were discovered during
the work but did neither fit into the other chapters nor deserve their own chapters. Finally,
it summarizes the results obtained in the preceding chapters and suggests directions for
further research on the topic.

In order to not pollute the main part of the thesis with long calculations and large frag-
ments of source code, these have been swapped out into the appendix. Appendix A contains
the formal proofs for all (few) theorems presented in the thesis. The thesis ends with Ap-
pendix B showing the relevant parts of the actual exploit implementation together with
remarks about how the different pieces work together. This chapter also comprises code for
a modification of the FreeBSD kernel, which has been developed but was in the end not
used for testing the exploit.

1.2. Conventions

Source code. All source code presented in this thesis is either written in C, C++ or a
C++-like pseudo code, depending on whether Linux or FreeBSD kernel code, exploit source
code, or demonstration code is concerned. Reserved code words are printed in boldface (e.g.
struct), comments in italics (e.g. /∗ comment ∗/). To distinguish between function names
and variable identifiers when they are referenced in the text, the former are suffixed by an
empty set of parentheses (e.g. sendto()) while the latter are not (e.g. skew). Function-like
macros, i.e. macros that take parameters, are treated like regular functions.

1.3. Communication Channels 3

Text formatting. Besides the source code, also some other special items got a special
formatting. Program and file names are printed in typewriter font (e.g. foo), as well as also
shell code, which is additionally prefixed with a dollar sign ($).

The symbols of the binary alphabet are represented by the boldface digits “1” and “0” so
that they can be distinguished from ordinal numbers. They could as well have been called
“true” and “false”.

Math notation. The natural numbers are represented by the symbol N and are defined to
contain all nonnegative integers, i.e. including zero: N := {0, 1, 2, . . .}. This choice is not
meant as a statement about whether 0 should generally be treated as a natural number or
not, but is just suited better for the outcomes of counting processes.

To avoid confusions between the names of scheduling algorithms and the big O notation,
the former are written with a normal font capital “O” (as in O(n)) while the latter is referred
to by a calligraphic “O” (as in O(n)).

Finally, wherever the basis of a logarithm is omitted, a binary logarithm is implicitly
assumed: log(x) := log2(x).

1.3. Communication Channels

The very beginning of this chapter already mentions channels for the communication between
different pieces of hardware inside a computer, between a computer and peripheral devices,
and between computers or other networking devices. Additional channels exist for inter-
process communication (IPC)[Wol05, Chapter 8], i.e. the communication between running
instances of programs on a single computer system. Two (or more) concurrently running
processes could use a pipe for unidirectional communication, as it is frequently done to
redirect the output of one program to the input of another program. Another possibility
would be shared memory, which can be used bidirectionally but requires for the processes to
take care of synchronization. The list could be extended by further POSIX IPC mechanisms,
like sockets or message queues, but also by operating system dependent ones as DDE, just to
name one of Microsoft’s Windows. All these channels are explicitly enabled by the operating
system to be used for communication and, thus, belong to the group of overt channels. As a
consequence, they are also under the control of the operating system and its security policy.
Unwanted flow of information through such an overt channel can thus be prohibited, e.g.,
by rejecting unprivileged processes.

As the definition of overt channels suggests, there are also channels which are not in-
tended to be used for communication. These are called covert channels and have first been
mentioned by Lampson in [Lam73]. They can be further distinguished into storage and
timing channels (compare [McH95]), depending on whether a stored value or the perception
of time is used to transmit information. An example for the former category could be the
existence of a file, whose entry in a directory list would be the stored value. To send a
value, the sending instance could encode a 1 by creating a certain file, a 0 by deleting it
again. If the receiver has read access to the directory, it could then determine the existence
of the file and decode it as a 1 or 0 respectively. Note that even though it is not intended
that processes communicate this way, the operating system has a chance to eliminate any
such channel through the regular security primitives, simply by not giving the receiver read

4 1. Introduction

access to any directory that the sender may create a file in. Unfortunately, this does not
hold true for every kind of covert channel, as the remainder of this section will show.

Timing channels utilize the receiver’s perception of time in order to transmit information,
as denoted before. If, for instance, the sending and the receiving process are run on the
same CPU, like on a uniprocessor system, then the sender could encode a 1 or a 0 by using
more or, respectively, less of the computing time at its disposal. This then may have an
influence on whether the receiving process is scheduled for execution again later or earlier,
which it can detect by measuring its own execution times to finally deduct the sent bit. In
[Hus78], this channel is called a quantum-time channel , and it will play an important role in
Section 2.1. Another, yet similar timing channel is the interquantum-time channel , which
encodes the information not by how long the sender process runs but by when it runs. Since
the execution times of processes and their ordering is not subject to security mechanisms
in common operating systems, this kind of channel cannot easily be restricted by setting
certain access rights or the like.

Interrupt-related covert channels (IRCCs, see [MS07]) also belong to the category of timing
channels, but here the sender uses an indirection for influencing the execution times of the
receiver process: Interrupts [Tan01, Section 5.2]. In contrast to polling , where the operating
system repeatedly asks hardware for status changes or new data, interrupts are used by
hardware to actively inform the operating system. If the execution of code itself raises the
interrupt, for example because an application wanted to execute an invalid or forbidden
instruction, then it is a synchronous one, otherwise called asynchronous. In the following,
the term interrupt will refer only to the latter kind, as the former always results in interrupts
of their originator and are therefore of no further interest for IRCCs. An interrupt itself does
not contain any specific information except for a request number referring to the respective
device that issued the interrupt. On its occurrence, the processor stops its regular execution
of code and switches to a specific interrupt handler , which has previously been installed
by the operating system and in most cases essentially consists of device driver code. After
completing the handler, the execution can return to the point where it had stopped when
the interruption occurred.2

Now the basic idea behind IRCCs is that a sender may be able to perform some operation
that causes an interrupt (or multiple) to occur later, when hopefully the receiver is executing.
The receiver in turn may be able to detect the occurrences of interrupts and may then extract
information, e.g., from how many of them occurred at what times and with which durations.

Timer chips generate interrupts with a fixed or, as usual, programmable frequency [Tan01,
Section 5.5], in order to periodically awaken the operating system and simultaneously take
away the control from a user process, which may have been executing for too long. In
general, a user process cannot cause additional or, in particular, fewer timer interrupts,
which it could exploit for establishing an IRCC with a receiver process. The opposite holds
true for hard disks (HDs), which use interrupts to indicate the completion of a read from or
write to the disk. Consequently, by calling an appropriate system function for reading from
or writing to a disk file, an ordinary user process may have an influence on the generation
of hard disk interrupts.3 Furthermore, since disk operations are comparatively slow, the

2Depending on the type of the interrupt, the operating system may also decide to schedule another process
than the one that was interrupted [BC05, Chapter 4].

3Throughout this thesis, “generating”, “initiating” and “triggering” interrupts will be used synonymously
to express that a process performs some operation that may finally result in the occurrence of a hardware
interrupt.

1.4. Information Theory 5

respective interrupts occur with a certain delay after the causing system call. If the delay is
long enough to allow for a process switch from the sender to the receiver, then the latter is
interrupted and may, for example, decode the occurrence of the interruption as a 1 or the
absence of it as a 0.

In modern operating systems, direct output to or input from hard disks is avoided in favor
of caches whenever possible. Thus, when repeatedly reading the same block from a file, a
sender process very likely will cause an interrupt only with the first operation, as afterwards
this block is present in the disk cache and read from there. The circumvention of block
caches can easily become cumbersome, as the sender has to find blocks which are not yet in
a cache with high probability. Therefore, it may have to consider read-ahead features of the
respective file system (compare e.g. [BC05, Chapter 16]), but it likely has no knowledge of
the actual block ordering on the disk.

Another source of influenceable interrupts, which is present in most of today’s comput-
ers, is the network interface card (NIC). The NIC generates an interrupt after a packet
has arrived at the cable, but also when packets have been sent out, which is to inform the
operating system, for example, that further packets may be sent through the device. Hence,
by sending packets over the network, even if to a nonexisting (Ethernet) address, the sender
can cause interrupts whose occurrences have a chance to carry information to a receiver
process. This still holds true when repeatedly sending the same packets, as network stacks
do not have a counterpart to the block caches. Due to the implied simplicity of triggering
NIC interrupts, they are chosen to be used for establishing IRCCs throughout the practical
experiments of this thesis. The use of NIC interrupts for the covert channel may be ques-
tionable, as sending the information in a packet over the network directly would be much
simpler and faster, but one might well imagine a situation where the sender cannot reach
any potential receiver process over a network or via a local socket.

Concerning the implementation of the exploit, the dependency on this specific type of
interrupt source has been reduced to a minimum, so that a substitution with another source
would not require changes to the core of the channel implementation.

1.4. Information Theory

Besides the practical realization of an interrupt-based covert channel, this thesis is also
concerned with modeling and analyzing the implemented channel’s properties. For this
purpose, the channel will later be considered to be a discrete memoryless channel , according
to the information-theoretic framework of [CT06], which is also based on in [MS07] for the
IRCC analysis.

From a theoretical point of view, a channel can be represented by triple of possible chan-
nel inputs, possible channel outputs and some transformation rule indicating how inputs
translate to outputs when passing through the channel. Due to the possibility of distortions
(noise), this transformation is not necessarily deterministic, but rather dictated by proba-
bilities. Throughout this thesis, the input alphabet, i.e. the set of channel inputs, will be
referred to as I, the output alphabet as O. For a discrete channel, both alphabets must be
discrete, thus either finite or countably infinite.4 As a convention, concrete input symbols
will be named x or xi for some i, output symbols y or yi.

4In its definition of a discrete channel, [CT06] is vague about the meaning of the “discrete,” but in the
course of the book supports the interpretation given here.

6 1. Introduction

A channel is memoryless if the transformation from inputs into outputs only depends on
the respective current input symbol and, hence, is particularly independent of the preceding
transmission history. Formally the transformation can then be expressed in form of a tran-
sition matrix P = (p(y|x))x∈I,y∈O, where p(y|x) is the conditional probability of obtaining
output y ∈ O if the input was x ∈ I. Together, the mentioned triple identifying a channel
is (I, O, P). In the following, unless otherwise mentioned, it is assumed that all covered
communication channels are memoryless.

Concerning the analysis of a covert channel, its transmission rate, i.e. the amount of
information transmissible per time unit, is of particular interest. It is comprised of the
amount of information that can be transferred with every single use of the channel and the
rate with which the channel can be used. Since the latter is not included in the channel
model, only the former, also referred to as the channel capacity , is further examined here.
Therefore firstly two examples for the transition matrix P are considered:

– If a channel’s output is completely random, no matter what the input symbols are,
then this channel intuitively does not transport any information.

– If the channel transforms each input symbol into its own, distinct output symbol (e.g.
I = O and the output is always identical to the input), then no information is lost on
the way through the channel and the output contains exactly as much information as
the input.

The first example depicts a simple but rather useless channel only intended to demonstrate
how the capacity of a channel can become zero. The second example is similarly simple to
understand, but its resulting capacity might be less obvious.

Since the amount of information of a single, fixed input symbol is meaningless, input
has to be considered a (discrete) random variable, which will be named X. Its probability
distribution will be referred to as p(X); the concrete probability of the input assuming a
certain value x0 ∈ I as p(X = x0), or just p(x0) if the random variable is clear from the
context. Analogously the output constitutes the random variable Y with distribution p(Y).

The amount of information contained in a random variable like X is captured by the
entropy , being defined as

H(X) = −
∑

x∈I

p(x) · log2(p(x)).

The logarithm to the base 2 makes the unit of the entropy be bits. For example, if alphabet
I is finite and X assumes all values of I with the same likelihood, then H(X) = log2 |I|,
i.e. the contained amount of information corresponds to the average number of bits needed
to represent an element of I. On the contrary, if X always assumes the same value x0 ∈ I,
then the random variable X does not deliver any information (everything is known already
in advance) and, consequently, H(X) = 0 can be computed for this case. Hence, entropy
can also be considered a measure of uncertainty (about the future values of the respective
random variable).

The intention of a communication channel is to reduce the uncertainty about the input,
ideally completely revealing it. Thus, the channel capacity can be concretized as to what
extent the uncertainty about the input is reduced by learning the output of the channel.
This reduction can be expressed as the difference of the initial uncertainty H(X) about X
and the remaining uncertainty H(X|Y) after learning Y , where

H(X|Y) = −
∑

x∈I,
y∈O

p(y) · p(x|y) log p(x|y)

1.5. The Testing Environment 7

is the conditional entropy of X, given Y . It can be shown that the reduction of uncertainty
about X, H(X)−H(X|Y), is equal to the reduction of uncertainty about Y if X is learned,
H(Y)−H(Y |X). Thus, the amount of information that one random variable reveals about
another one is identical to the amount of information that this other variable reveals about
the former one. This amount of information is consequently referred to as the mutual
information I(X; Y) (between random variables X and Y):

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) =
∑

x,y

p(x, y) · log
p(x, y)

p(x)p(y)
.

For the first of the above two examples, one can compute that H(Y) = H(Y |X) = 0 and
therefore also I(X; Y) = 0: There is no mutual information between input and output,
as intuition suggests. In the second example it turns out that H(X|Y) = 0 and, thus,
I(X; Y) = H(X): All information contained in the input is also in the output of the
channel. Unfortunately, the mutual information of the latter example cannot – without
additional knowledge about H(X) – be further simplified to a constant but depends on how
“informative” the input is.

The capacity of a discrete, memoryless channel (I, O, P) is a measure independent of
peculiarities of the input distribution and is therefore defined as the maximum mutual
information of input and output, over all possible input distributions:

Cap(I, O, P) := max
p(X)

I(X; Y).

If the channel is clear from the context then the capacity may in the following be referred
to just as “Cap”.

While in the first above example Cap(I, O, P) = 0 follows immediately, the capacity of
the second example’s channel equals the maximum possible information of the input: log |I|
(as before, in bits).

1.5. The Testing Environment

The exploit of IRCCs developed in this thesis will be evaluated in practice by conducting
several experiments. All these experiments are conducted on the same computer, whose
configuration will follow below. This configuration is to be seen as one example for a
possible target system and does explicitly not raise the claim of being representative for all
possible target systems of the exploit. In particular, the chosen hardware is not intended
to be more susceptible to or resistant against interrupt-related covert channels than other
hardware might be.

The basic configuration – comprising hardware, operating system and software – for most
experiments is the following:

– AMD Athlon XP 1600+ CPU. This CPU does not support frequency scaling and,
thus, operates at a constant frequency of about 1400MHz.5 It is the only CPU of the
system.

5Measurings for later experiments returned a more accurate value of 1407.258871MHz, relative to the time
of the clock chip.

8 1. Introduction

– AMD 761 north bridge and VIA 686B south bridge.

– 512MB of DDR-RAM.

– Realtek 10Mbit/s NIC with RTL8029(AS) controller, connected to a Fast Ethernet
switch without any other machines attached. The interrupt request number (IRQ) of
this NIC is not shared with other hardware devices.

The controller is NE2000 compatible (see [Rea97]) and is enabled via the Linux PCI
NE2000 driver. At system startup, Linux registers a function called ei interrupt ()

from drivers/net/lib8390.c as the interrupt handler for this NIC, where in turn
the transmit interrupts are delegated to ei tx intr (). The code belonging to the latter
function shows that transmit interrupts are only used as a notification for potentially
sending further packets.

– Realtek 100Mbit/s NIC with RTL8139 controller, only as a reference. During all
experiments which do not explicitly involve this controller, it has not been connected
to any other network device. Its IRQ is not shared.

– Seagate 40GB UDMA 100 hard disk.

– GeForce2 MX VGA controller.

– PS/2 keyboard.

– Gentoo Linux, with a modified vanilla 2.6.22.9 kernel (see Section 2.1.2). The kernel
configuration is minimal and all drivers are compiled into the kernel (i.e. there are no
modules).

– Kernel timer frequency is set to 100Hz (the lowest possible setting offered).

– pdflush’s writeback interval was changed from 5 s to 127 s (a prime to make the period
for “collisions” with other timers large):

$ echo 12700 > /proc/sys/vm/dirty_writeback_centisecs

pdflush is a kernel task that writes cached data, which is kept in Linux’s page cache,
to the hard disk. The reason for the change of the writeback interval and for the choice
of a prime will be given in Section 3.2.2 (in particular page 31).

– The commit interval for the root ext3 partition (the only mounted disk filesystem)
was changed to 347 s (again prime).

– Toolchain used for the compilation of the exploit: gcc 4.1.2, binutils 2.18.

– Init program: It was discovered that the SystemV init process, sysvinit, has an
unconfigurable 5 s timeout, after which some routine checks are performed. Similar
timeouts seem to be included also in replacement programs for the default init pro-
cess, like initng, einit or minit. Unless otherwise mentioned, sysvinit (version
2.86) will be used.

For the basic configuration (and only for the basic configuration), the timeout in
sysvinit was disabled without modifying the sources with a little hack:

1.5. The Testing Environment 9

$ umask 177 && rm /dev/initctl && touch /dev/initctl

This stops sysvinit from querying the FIFO /dev/initctl with the mentioned time-
out and makes it pause() instead. The original functionality can finally be restored by

$ rm /dev/initctl && kill -s HUP 1

– Other processes: udev (version 119), login (from shadow 4.0.18.2), bash (version 3.2).

It is apparent that, compared to usual computer systems, the above setting is kept almost
minimalistic. Concerning the hardware, for instance multiple CPUs or hard disks, attached
USB devices or connected large networks are missing. Common software like a system
logger, a daemon for scheduled commands (cron) and, depending on the purpose of the
system, a desktop environment or network servers have also not been included. While the
resulting setting is beneficial for obtaining results about the behavior of an IRCC exploit
under minimal disturbances, it is probably unrealistic to have such a system as the target
of the exploit. Therefore, the basic setting is supplemented by some additional hardware
and software to form the extended configuration:

– PS/2 mouse.

– An additional ext3 partition with the default commit interval of 5 s.

– syslog-ng (version 2.0.9).

– KDE (version 3.5.9) in a default setup with Xorg (version 7.2), started via xinit.

Wherever the extended configuration was used to conduct an experiment, this will explic-
itly be mentioned. During all experiments, the testing environment was not used for doing
other work in order to reduce unreproducible effects to a minimum.

10 1. Introduction

2. The Exploit

This thesis is based upon an existing exploit, which first showed that interrupt-related covert
channels are not only theoretically but also practically possible. Since the exploit is the result
of a work as a student researcher which has not been published, this chapter first introduces
its basic concepts, supported by the most relevant fragments of code. The remainder of the
chapter then is a novel contribution and deals with creating an environment where utilizing
IRCCs is reasonable and finally with adapting the exploit to the changed conditions.

In its original form, the exploit consisted of a set of command line programs for Linux, in-
cluding the actual sender and receiver as well as other measurement and evaluation utilities.
Later it was rewritten and extended by a graphical user interface (GUI) for demonstrating
purposes. The implemented communication is unidirectional, i.e. only the sender transmits
data through the channel and there is no feedback, even through potential other channels.1

The implemented IRCC requires that sender and receiver process are executed concur-
rently on the same computer. Moreover, the interrupts triggered by the sender process have
to occur at the processor which the receiver is executed on. While on a uniprocessor sys-
tem this is trivially the case, the exploit does not make any provision for achieving it on a
multiprocessor system.

Basic concept. The exploit allows for the transmission of a finite bit sequence. Each bit
is transmitted during its own bit interval . All bit intervals of a transmission are of the same
length, upon which sender and receiver have to agree beforehand. The starting time of the
transmission finally fixes the positions of all bit intervals and must therefore be the same for
sender and receiver. All bits are from this time on transmitted consecutively (in the same
ordering as in the bit sequence).

To send a 1 over the channel, the sender repeats the two steps of executing an interrupt-
initiating system function, in this case sendto() for sending a UDP packet,2 and immediately
afterwards yielding the CPU. After each iteration, the receiver therefore has a chance of
being scheduled and might then detect the interrupt. Finally, a 0 is represented by the
sender not calling the mentioned function at all and, thus, not deliberately causing any
interrupts.

For each bit, the receiver steadily tries to detect interruptions of its execution and measures
their durations, counting only those whose duration is within a certain range. Ideally this
range represents the characteristic durations of interrupts caused by the sender or, more
precisely, by the hardware device that has been chosen by the sender. After a bit interval
has elapsed, the counted number is the output of the channel for this bit. This output in

1Under the circumstance of an asymmetric security policy, the receiver may be allowed to, e.g., write to a
file which the sender can read from, but not vice versa.

2UDP packets have the advantage that they do not require for a complex connection establishment like
TCP does and are allowed to be sent without superuser privileges, in contrast to e.g. ICMP pings under
Linux.

12 2. The Exploit

void s e n d b i t (bool b i t) {
w a i t b i t s y n c () ;
i f (b i t == 1)

r u n f o r (b i t d u r a t i o n) {
s h o r t b u s y wa i t () ; // op t i ona l
g e n e r a t e i n t e r r u p t () ;
s c h e d y i e l d () ;

}
e l s e

wa i t f o r (b i t d u r a t i o n) ;
}

Listing 2.1. Original code to send a bit over an IRCC (pseudo code).

general does not equal the input (e.g. during longer bit intervals, more than one interrupt
could be generated for input 1).

This basic concept of the exploit is retained through the rest of this thesis due to its
simplicity. Other channel encodings, like those proposed in [MS07, MS08], would have
been possible as well but have deliberately not been chosen since (a) their implementational
complexity would have been higher, (b) their susceptibility to external influences is expected
to be higher, and (c) it would have been harder to distinguish between deficiencies resulting
from the implementation and those of an external nature.

Sender implementation. The code which is executed by the sender for each bit is rather
simple and shown in Listing 2.1. At the very beginning, the function waits for the bit’s time
interval to start. This could be and has been realized by sleeping until the Unix timestamp
(the number of seconds since midnight, January 1, 1970) assumes an integral multiple of
the bit interval length. The following then depends on whether a 0 or a 1 is to be sent.
In the former case, the sender simply waits the bit’s full interval and, thus, particularly
does not actively cause any interrupts. More interesting is the latter case. The run for ()

construct was defined as a C macro (see Section B.1.3) that does what its name indicates:
Repeating the execution of the following code block for the given bit duration with the help
of an interval timer. The repeated block consists of three lines which deserve their own
explanation:

(a) The first line contains an optional, short extra delay represented by short busy wait ().
An explanation at the end of this section will make the intention of this seemingly
senseless code clear.

(b) The second line consists of the interrupt-generating function, here generate interrupt (),
itself. All potentially required parameters for the interrupt-generation are omitted
here, as they depend on which hardware device has been chosen as the source for the
interrupts.

(c) The last line sets the sender asleep with a call to sched yield (). This has the intention
that while the sender is sleeping, the operating system can schedule another process,
which ideally is the receiver.

13

t im i n g t mea s u r e du r a t i on (i n t i t e r a t i o n s) {
t im i n g t t = get t ime () ;
double v = 1 . 0 ;
f o r (i n t i=i t e r a t i o n s ; i >0; −− i) v ∗= 1 . 5 ;
return ge t t ime () − t ;

}

bool i n r e l e v a n t r a n g e (t im i n g t dt) {
return (dt >= base+dmin && dt <= base+dmax) ;

}

void r e c e i v e b i t (i n t &i n t e r r u p t s) {
w a i t b i t s y n c () ;
r u n f o r (b i t d u r a t i o n) {

dt = mea su r e du r a t i on (i t e r a t i o n s) ;
i f (i n r e l e v a n t r a n g e (dt))

++i n t e r r u p t s ;
}

}

Listing 2.2. Original code to receive a bit over an IRCC (pseudo code).

Receiver implementation. The code for the reception of a single bit is given in Listing 2.2.
The structure of the receive bit () function resembles the code for sending a bit: The waiting
for the begin of the transmission is the same as for the sender, as well as the code repetition
for the bit’s duration. Interruptions are measured and counted only if their durations fall
into the range [dmin, dmax]. This range depends on how long the operating system takes to
handle the interrupt signal, which in turn relies on (a) the operating system and its version,
(b) the used driver of the device causing the interrupt, and (c) the CPU’s execution speed
and other characteristics.

The one thing worth a closer look is how the interruptions are measured, namely by the
measure duration() function. To do so, the function first takes the time, then executes some
piece of code which does not produce a result but merely should, if uninterrupted, always
have the same execution time represented here by the variable base.3 Afterwards, the time
is taken again and the elapsed time – the duration dt – is computed. If no interruption has
taken place, then the duration should equal base. Otherwise it is increased by the duration of
the interruption. This code thus detects and measures all interruptions that occur while the
receiver is executing the measure duration() function. At the same time this also introduces
the problem of a good choice of the iterations parameter, which determines the runtime
of the loop in measure duration(). This runtime should be long in comparison to the other,
simple operations in the run for () loop, to keep the execution in the measuring part of the
receiver most of the time. (Interruptions occurring while the receiver is executing outside
of the measuring code are not detected.) At the same time it has to be short enough to
not collect multiple interruptions at once, which would tamper with the results. Later, in
Section 3.3, this problem will be addressed again.

3Even if the code is exactly the same, this can hardly be achieved on modern CPUs because of, e.g., their
elaborate caching and branch prediction.

14 2. The Exploit

In its aforementioned GUI implementation, the receiver additionally included code to map
the counted numbers of interruptions back to the assumed corresponding binary inputs, 0

and 1, with the help of thresholds (see page 34). This has been removed here as it is
independent from the basic concept of the transmission itself.

Quantum-time channel artifacts. During the development of the exploit it was discovered
that not only the interrupts generated by the sender have an influence on the receiver’s
measurings, but also the running sender process itself. This comes from the fact that the
receiver cannot easily distinguish between the interruptions deliberately caused by the sender
calling a system function, and interruptions resulting from an involuntary switch to and back
from the sender process, since such task switches are also the result of interrupts, normally
coming from a timer chip. Thus, a sender process running only for a certain short period of
time before yielding the CPU again (here via sched yield ()) may falsely be counted by the
receiver as a sender-initiated hardware interrupt.

For that reason the additional waiting function short busy wait () has been added to the
sender’s code to artificially elongate the sender’s execution time by a certain duration, such
that the receiver can no longer confuse the sender itself with the interrupts it is causing.
Of course one could, instead of filtering out the sender process’s influence, also deliberately
use it to transmit even more information per time unit through the channel. This, however,
would result in a combination of an IRCC and a quantum-time channel, and would go
beyond the scope of this thesis.

2.1. Fixed Quantum Scheduling

Neither the implementation nor the analysis of quantum-time channels are within the focus
of this thesis, but nevertheless this kind of covert channel has an influence on the analysis
of IRCCs: As long as an attacker has the opportunity to use a quantum-time channel for
his/her malicious purposes, he/she would probably not use a harder to realize and potentially
more conspicuous IRCC (compare the paragraph after this introduction). However the
simple assumption alone that quantum-time channels have been disabled on the target
system is insufficient, since disabling quantum-time channels requires for changes of the
operating system which, in turn, potentially interfere with the way IRCC exploits operate.
Thus, in order to obtain realistic results for the capacity of an IRCC implementation, the
analysis environment must at least sufficiently resemble one where quantum-time channels
are impossible.

To obtain such an environment, the instance responsible for the assignment of the CPU
time – the operating system – has to be adapted. More precisely, this affects the algorithm
responsible for determining the process scheduling of the system, also known as the process
scheduler . In the following it will shortly only be referred to as the scheduler, but it is
not to be confused with other scheduling algorithms that may be contained in an operating
system, like for instance the I/O scheduler (compare e.g. “The I/O Scheduler” in [BC05,
Chapter 14]).4 It has to be remarked that the primary goal of the scheduler modifications
is to disable quantum-time channels, but they in addition also simplify the later analysis.

4The I/O scheduler may have an influence on an IRCC if it affects the chosen interrupt source like it is
the case for the hard disk. Compare [KW91] for an idea of a covert channel that could explicitly exploit
an I/O scheduler.

2.1. Fixed Quantum Scheduling 15

If an operating system virtualizes the CPU for every task by fixing the starting time and
the duration of every timeslice, as proposed in [MS07], then not only quantum-time but
also interquantum-time channels are no longer available. But as a consequence, the whole
systems performs worse, especially with respect to interactive processes,5 since even short
and/or seldom operations always have to reserve and consume at least a whole timeslice.
Simultaneously, also the performance of IRCCs on such a system may be reduced to a certain
amount and the exploit, at least in its original implementation, might not even work at all.

In the following, at first an operating system will be chosen, whose scheduler will after-
wards be modified to disable quantum-time channels according to a simple information flow
policy. Interquantum-time channels will not be considered for reasons discussed below, after
this introduction. The information flow policy shall ensure that no information is transferred
from a set of sender tasks via a quantum-time channel to a set of receiver tasks. The idea
behind this policy, in comparison to, e.g., the suggestion of [MS07], is that quantum-time
channels do not necessarily have to be forbidden between every pair of running tasks: If
a sender had superuser privileges, it would certainly not have to use a covert channel to
transmit information to any other task. Also, other groups of tasks, like tasks running on
behalf of the same user, are likely able to use overt channels for the communication among
each other.

To establish the aforesaid information flow policy, (a) sender tasks always get a timeslice
of the same length, independent of their static or dynamic priority,6 and (b) even if a sender
task blocks or yields the CPU earlier inside a timeslice, no receiver task gets scheduled
before the end of the full timeslice. This enforcement of timeslices with a constant length
will be referred to as fixed quantum scheduling , which is however not to be confused with
the “fixed quantum” that is sometimes used to describe that a scheduling algorithm allows
every task – independent of its static or dynamic priority – to use a full timeslice of the
same length, but, if the task blocks or voluntarily yields the CPU earlier, schedules another
runnable task immediately.

Quantum-time and interquantum-time channels. Quantum-time channels as well as
interquantum-time channels are both related to IRCCs in that they all exploit that the
CPU is shared between multiple processes and, in particular, the sender and the receiver of
the respective covert channel. Nevertheless both classes are treated differently in this thesis:
The former are explicitly eliminated while the latter are ignored.

Quantum-time channels, similar to IRCCs, require for a receiver process that is able to
detect interruptions. The difference is that the latter channels exploit deliberately caused
hardware interrupts, while the former exploit interruptions by the sender process itself.
Quantum-time channels therefore do not depend on the availability of a suitable source
for hardware interrupts and do not rely on triggering potentially conspicuous operations
(reading from and writing to a hard disk may cause acoustic noise; sending packets over a
network may appear suspicious to a firewall or intrusion detection system). A quantum-
time sender can easily transmit more than only binary information by yielding the CPU
after different amounts of time. Therefore quantum-time channels can potentially transmit

5The Linux kernel decides that a task is interactive depending on the difference between static and dynamic
priority (compare Listing 2.4), where the dynamic priority in turn is set based on the task’s sleep time.

6Constant timeslice lengths are a sufficient but not a necessary condition for ruling out quantum-time
channels. Compare the later Section 4.1 for the discussion of an alternative.

16 2. The Exploit

information faster than the implemented IRCC exploit and would, thus, be preferred. A
realistic setting for IRCCs should therefore not permit quantum-time channels.

Prohibiting interquantum-time channels, e.g. by fixing timeslice starting times of all tasks,
is very complex to realize in practice – at least if a serious impact on the overall system
performance is to be avoided. The simple approach of enforcing a round-robin scheduling
between all tasks would lead to a lot of reserved but unused timeslices, since most tasks
in a contemporary computer system are sleeping or blocked most of the time. In such an
environment, the scheduling algorithm could easily implement an information-flow policy
similar to the aforementioned one, but against IRCCs, by sorting the tasks sensibly (e.g. by
ensuring that receiver timeslices are never placed immediately after sender timeslices). This
would eliminate the possibility of IRCCs completely, unless hardware interrupts can occur
very late after their generation. Thus, if suchlike performance degradations are acceptable
on a given system, then IRCCs do not constitute a threat to it. The design and/or imple-
mentation of a more efficient countermeasure against interquantum-time channels would,
however, go beyond the scope of this thesis. Therefore, this class of covert channels will be
ignored for the remainder of this thesis.

2.1.1. Choice of Operating System & Scheduler

Before a scheduler can be modified it has to be decided which scheduler under which op-
erating system it will be. The set of operating systems considered here is firstly restricted
to the free, open source operating systems (for obvious reasons), which additionally run on
the available hardware, in this case the Intel x86 architecture PC described in Section 1.5.
Secondly, the author’s personal experience and preference further reduces the set to Linux
and FreeBSD. FreeBSD in its current version 7 allows a choice between the traditional 4BSD
and the new ULE 7 scheduler. Linux offers no choice in its current version as well as in pre-
vious ones, but had different schedulers over the course of its history: The O(n) scheduler
is found in the 2.4 and earlier kernel series, the O(1) scheduler was the default from 2.5
to 2.6.22, and finally the Completely Fair Scheduler (CFS) is used since 2.6.23 until now.8

Their underlying approaches can be categorized into three groups (sorted by their age):

(a) 4BSD and O(n) stem from the traditional UNIX scheduler and are becoming more
and more obsolete because of their linear, O(n), time complexity of every task switch
[Aas05, Rob03], where n is the number of runnable tasks . This complexity is the result
of doing CPU usage accounting for sleeping tasks and choosing the next task by doing
a linear search through the list of all tasks.

(b) ULE and O(1) both aim to have a constant, O(1), scheduling overhead, independent
of the number of tasks. This is achieved by doing CPU usage accounting only for the
currently running task and by using queues of ready tasks to be executed next, in
order to simply pick the first instead of completely searching through all.

(c) CFS tries to do a fair scheduling even more than all the previous algorithms. Therefore
it manages a tree of runnable tasks, descendingly sorted by the “gravest need for more
CPU time” [Mol07]. For the sake of completeness it has to be mentioned that the
sorted tree introduces a logarithmic, O(log n), scheduling complexity.

7To be precise, the ULE scheduler in FreeBSD 7.0 goes under the name of “ULE 3.0”.
8At the time of writing, 2.6.27 is the most recent stable version.

2.1. Fixed Quantum Scheduling 17

Presumably it is possible to modify all of the aforementioned schedulers such that they
apply fixed quantum scheduling. The only difference is the effort necessary to do so. Since
“the CFS scheduler has no notion of timeslices” [Mol07], this algorithm is likely farther away
from fixed length timeslices than the others, which all have a notion of timeslices. Thus,
CFS is dropped from the list of candidates. On the other hand it is assumed, that the
CPU usage accounting of sleeping tasks entails some difficulties (what about a task that is
voluntarily sleeping but whose timeslice has not yet elapsed?). For that reason, 4BSD and
O(n) are also eliminated, leaving only ULE and O(1).

Initially, a patch was written for each the O(1) and the ULE scheduler, but after the
development and testing process it was chosen to use only the O(1) scheduler for the thesis.
This decision partly resulted from the fact that FreeBSD usually boosts blocked processes by
assigning them a much higher priority so that they can quickly be rescheduled again when
they are unblocked, e.g., because requested data from a hard disk has been read. These
higher priorities are handled by the kernel differently from “normal” priorities and attempts
to simply remove the boost resulted in a system that occasionally locked up completely or
hung until an external event (a key press) occurred. If the priority boost is left untouched,
then an unblocked task immediately got scheduled, destroying the fixed quantum behavior.

This problem is not of a very important nature, as the exploit is not expected to use
blocking system calls that would actually trigger the boosting mechanism. Nevertheless the
potential weakness remains and, thus, the developed ULE scheduler modification will only
be described in short in Section B.2, but is apart from that not further considered in the
thesis. The following section will hence describe the steps necessary to turn Linux’s O(1)
scheduler into a fixed quantum scheduler.

2.1.2. Scheduler Modifications

The O(1) scheduler is described in great detail in [BC05, Chapter 6] and [Aas05], and in short
also in [Mol02]. Another explanation at this position is therefore assumed to be superfluous
and will be omitted. All listings presented in this section originate from some location inside
the modified file kernel/sched.c of the Linux 2.6.22.9 source tree. The names of newly
added functions are prefixed by “fixed quantum ” to be easily recognizable.

The modifications consist of three steps: Ensuring constant timeslice lengths, ensuring
round-robin scheduling and, most important, ensuring that a receiver task is barred from
execution as long as the last sender timeslice has not fully finished. The first two steps mainly
simplify the analysis of the exploit and only secondarily avoid quantum-time channels.9

Information flow domains. As mentioned earlier, the modified scheduler will not imple-
ment strictly fixed CPU quanta for all tasks, but instead only a notion of fixed quanta by
not scheduling a receiver task before the last full sender task’s timeslice has elapsed. Thus,
the first step is to devise some criterion by which ordinary tasks can be classified into the
domains “sender,” “receiver,” or “other.” In general, criteria may be chosen almost freely,10

but for a realistic scenario, user or group IDs seem to be the most reasonable. Users with
access to confidential data would then be put into the “sender” domain, while all other or all
untrusted users would belong to the “receiver” domain. In order to avoid unnecessary user

9A quantum-time channel could otherwise be established by the sender process varying its interactivity.
10Some criteria may have side effects, as for instance different task priorities (“niceness”).

18 2. The Exploit

/∗ Determine sender and r e c e i v e r by t h e i r e f f e c t i v e group ID ∗/
#def ine IS QUANTUM TIME SENDER(t s k) ((t s k)−>eg i d == 2222)
#def ine IS QUANTUM TIME RECEIVER(t s k) ((t s k)−>eg i d == 2223)
#def ine IS QUANTUM TIME RELATED(t s k) \

(IS QUANTUM TIME SENDER(t s k) | | IS QUANTUM TIME RECEIVER(t s k))

Listing 2.3. Determining sender and receiver tasks.

or group switches for the experiments, effective group IDs have been chosen to accomplish
this task, as the macros in Listing 2.3 show.

For the protection of a real system against quantum-time channels, it may be desirable
to have for more than just one domain for the senders and one domain for the receivers to,
for example, protect the secrets of each user from being disclosed to any other user. An
implementation of lots of domains together with a complex information flow policy however
is expected to require for a more complicated algorithm and more complex data structures
for the decision of whether a task is allowed to be scheduled or not. Since for the experiments
conducted with the exploit for this thesis the two domains “sender” and “receiver” perfectly
suffice, the implementation of a more general solution has been avoided.

Constant timeslice length. The unmodified O(1) scheduler assigns timeslices to tasks,
whose length depends on the task’s static priority. For the analysis this is not a problem,
since in contrast to the dynamic priority, the static priority remains constant unless it
is explicitly changed, for instance via the nice () system call. Nevertheless, the timeslice
lengths for sender and receiver tasks are explicitly fixed by the patch to the default timeslice
length of 100ms, independent of a static priority, by adding few lines of code to the already
existing task timeslice () function. Fixed receiver timeslice lengths are not required to forbid
quantum-time channels but have been added to simplify the later analysis of the channel.

Despite the timeslice length, also the timeslice granularity has an influence on when a task
gets withdrawn the CPU in favor of another task even before its timeslice has elapsed. It
only affects interactive tasks, i.e. tasks which have not made much use of the CPU recently,
with the intention “that they do not monopolize the CPU” [BC05, p. 273]. Both the sender
and the receiver of the exploit are implemented in a way that keeps the CPU busy, at
least after the adaptations in the end of this chapter, and should thus not be considered
interactive. However, due to the fact that the scheduler needs some time to learn this
empirically, the granularity has an undesired effect at the very beginning of the exploit’s
execution. As a simple but elegant solution, an additional condition is inserted into the
TASK INTERACTIVE() macro such that it never recognizes sender or receiver tasks as being
interactive. Listing 2.4 shows both modified functions.

Round-robin scheduling. Roughly speaking, the O(1) scheduler already performs round-
robin scheduling among tasks with the same priority. This time, however, not the static
but the dynamic priority of the tasks is relevant. The dynamic priority is related to the
interactivity of a task and may therefore again only have unwanted influence on the beginning
of an exploit’s execution. Listing 2.5 shows the modified normal prio () function, which does
no longer take the CURRENT BONUS() into account for sender and receiver tasks.

2.1. Fixed Quantum Scheduling 19

/∗ Times l i ce l e n g t h f o r a l l FQ ta s k s . ∗/
#def ine FIXED QUANTUM TIMESLICE DEF TIMESLICE
s t a t i c i n l i n e unsigned in t t a s k t i m e s l i c e (s t ruct t a s k s t r u c t ∗p)
{

i f (IS QUANTUM TIME RELATED(p))
return FIXED QUANTUM TIMESLICE ;

e l s e /∗ Non−FQ tas k s are t r e a t e d as usua l . ∗/
return s t a t i c p r i o t i m e s l i c e (p−>s t a t i c p r i o) ;

}

/∗ FQ re l a t e d t a s k s are never i n t e r a c t i v e . ∗/
#def ine TASK INTERACTIVE(p) \

(! IS QUANTUM TIME RELATED(p) && \
((p)−>p r i o <= (p)−> s t a t i c p r i o − DELTA(p)))

Listing 2.4. Constant timeslice lengths for senders and receivers.

Another deviation from the strict round-robin scheduling is that interactive tasks under
some conditions are not put into the expired array but back into the active array (in the
task running tick () function). Since this behavior relies on the TASK INTERACTIVE() macro,
the modification of the previous paragraph has already fixed it.

Blocking receivers. The main objective of the scheduler modification is to prevent a re-
ceiver task from being executed before the full timeslice of the last sender task has elapsed.
Therefore the kernel needs to keep track of sender timeslices and needs to have some way
of preventing receiver tasks from being executed too early. The following four steps, ac-
companied by the four parts of Listing 2.6, clarify how this was realized. Listing 2.7 shows
the implementation of the used helper functions that query and update the “internal” data
structures of the scheduler modification.

(a) All data that the blocking mechanism needs to remember is put into a C structure
struct fixed quantum, which is added to each CPU’s runqueue (struct rq), which in turn
contains, among a lot of other data fields, the data structures with all tasks assigned
to the respective CPU.

The fq wait ticks structure member counts the number of “ticks” (timer interrupts)
that have to occur until the next receiver is allowed to be scheduled (on this CPU). This
matches the way the O(1) scheduler handles timeslice durations: Before scheduling a
task it assigns a number of ticks to it (precisely, to the time slice member of the task’s
struct task struct) and the task is then allowed to execute for no longer than this
many ticks. Therefore, the tick counter of the task is decreased by 1 every time the
task running tick () function is executed as a consequence of a timer interrupt. Once
the counter approaches zero, a reschedule is enforced.

The Boolean member fq expired , which is set to true by fixed quantum mark expired()

in task running tick (), stores whether the time slice of an expired task has already
been refreshed. For such tasks which consumed their full timeslice, the function
fixed quantum update leaving() must not consider the new time slice value as the task’s
spare timeslice duration but instead reset fq wait ticks to zero.

20 2. The Exploit

s t a t i c i n l i n e i n t n o rma l p r i o (s t ruct t a s k s t r u c t ∗p)
{

i n t bonus , p r i o ;

/∗ FQ re l a t e d t a s k s do not ge t any bonus . ∗/
i f (IS QUANTUM TIME RELATED(p))

return p−>s t a t i c p r i o ;

bonus = CURRENT BONUS(p) − MAX BONUS / 2 ;

p r i o = p−>s t a t i c p r i o − bonus ;
i f (p r i o < MAX RT PRIO)

p r i o = MAX RT PRIO ;
i f (p r i o > MAX PRIO−1)

p r i o = MAX PRIO−1;
return p r i o ;

}

Listing 2.5. No dynamic priorities for senders and receivers.

The initialization of the structure members is done by fixed quantum setup(), which
should be called on system startup, for example in sched init ().

(b) Whenever a sender task stops executing – either voluntarily or involuntarily –, the data
structure from the last bullet point has to be updated. The natural code location to do
this is inside the main scheduler function, schedule(), somewhere near the beginning.
Similar changes would also have been possible at other locations that may cause a
task to yield the CPU as, e.g., sys sched yield (). This latter approach would allow for
a more fine-grained control, which for this thesis was not determined to be necessary,
but would require more changes of kernel code.

(c) Also in the schedule() function, but later, the next task to be executed is selected.
The scheduling decision must be intercepted if (and only if) a receiver was cho-
sen and the last sender’s timeslice has not yet elapsed. The check is performed
by fixed quantum run check() and in case of a negative outcome, the CPU’s idle task
(rq−>idle) is chosen for execution – independently of whether other tasks are ready.
The chosen implementation thus realizes a suboptimal allocation of CPU time, which
may even be advantageous for the IRCC exploit (compare with the idea of inter-
timeslice gaps of Section 4.1).

(d) The fixed quantum run check() function introduced in the preceding step has to return
false as soon as the last sender’s timeslice has elapsed. Therefore, the fq wait ticks

value is decremented with every timer interrupt in the scheduler tick () function, just
like it is done for time slice (in task running tick ()).

Once the counter has reached 0, a reschedule has to be requested (by executing
set tsk need resched ()) in order to check whether a previously blocked task can now be
scheduled. This is necessary since the idle task does neither stop executing by itself,
nor does it get withdrawn the CPU due to, e.g., an expired timeslice.

2.1. Fixed Quantum Scheduling 21

(a) Data structure for inclusion into struct rq.

s t ruct f i x ed quantum {
/∗ Number o f t i c k s u n t i l nex t r e c e i v e r t a s k may run . ∗/
u i n t f q w a i t t i c k s ;
/∗ Did l a s t sender t a s k e xp i r e (in t a s k r unn i n g t i c k)? ∗/
bool f q e x p i r e d ;

} ;

(b) Recording a leaving sender task in schedule().

/∗ For a l e av i n g sender task , s t o r e the number o f
∗ remaining t i c k s in the l a s t t ime s l i c e . ∗/

i f (IS QUANTUM TIME SENDER(p r ev))
f i x e d q u a n t um upd a t e l e a v i n g (rq , p r ev) ;

(c) Checking whether to block a receiver task in schedule().

/∗ I s the chosen t a s k a l r eady permi t ted to execu te ? ∗/
i f (! f i x ed quan t um run ch e ck (rq , next)) {

/∗ May not run ! Simply f a l l back to i d l e here . ∗/
next = rq−> i d l e ;
goto s w i t c h t a s k s ;

}

(d) Updating data structure in scheduler tick ().

bool f q i d l e r e s c h e d ; /∗ Should r e s c hedu l e i f c u r r en t l y i d l e ? ∗/

upda t e cpu c l o ck (p , rq , now) ;

/∗ Update the f i x ed−quantum wai t va lue . ∗/
f q i d l e r e s c h e d = f i x ed quan t um c l o ck upda t e (rq) ;

i f (! i d l e a t t i c k)
t a s k r u n n i n g t i c k (rq , p) ;

e l s e i f (f q i d l e r e s c h e d) {
/∗ I d l e thread i s running and the f i x ed quan tum c lock upda te
∗ has determined t ha t a r e s c hedu l e might be necessary . ∗/

s e t t s k n e e d r e s c h e d (p) ;
}

Listing 2.6. Steps in blocking receiver tasks.

22 2. The Exploit

s t a t i c i n l i n e void f i x e d quan t um s e t up (s t ruct f i x ed quantum ∗ f q) {
fq−>f q w a i t t i c k s = 0 ;
fq−>f q e x p i r e d = f a l s e ;

}

s t a t i c i n l i n e bool f i x e d quan t um c l o ck upda t e (s t ruct rq ∗ rq) {
/∗ Return t rue i f f f q w a i t t i c k s j u s t changed to 0 . ∗/
i f (rq−>f q . f q w a i t t i c k s == 0) return f a l s e ;
return (−−rq−>f q . f q w a i t t i c k s == 0) ;

}

s t a t i c i n l i n e void f i x e d q u a n t um upd a t e l e a v i n g (s t ruct rq ∗ rq ,
s t ruct t a s k s t r u c t ∗ t s k) {

s t ruct f i x ed quantum ∗ f q = &rq−>fq ;
i f (fq−>f q e x p i r e d) {

/∗ Expired t a s k s a l r eady have t h e i r t im e s l i c e r e f i l l e d in
∗ t a s k runn ing t i c k , bu t i t has been 0 b e f o r e . ∗/

fq−>f q w a i t t i c k s = 0 ;
fq−>f q e x p i r e d = f a l s e ;

} e l s e {
/∗ Store the unused t i c k s and manually r e f i l l the t im e s l i c e
∗ a l ready f o r the next time i t i s s chedu l e () ’ d . ∗/

fq−>f q w a i t t i c k s = tsk−>t i m e s l i c e ;
t sk−>t i m e s l i c e = t a s k t i m e s l i c e (t s k) ;

}
}

s t a t i c i n l i n e void f i x e d quan t um ma rk e xp i r e d (s t ruct rq ∗ rq ,
s t ruct t a s k s t r u c t ∗ t s k) {

i f (IS QUANTUM TIME SENDER(t s k))
rq−>f q . f q e x p i r e d = true ;

}

s t a t i c i n l i n e bool f i x e d quan t um run ch e ck (s t ruct rq ∗ rq ,
s t ruct t a s k s t r u c t ∗ t s k) {

/∗ Rece ivers may on ly be schedu l ed i f no wai t t i c k s are l e f t ,
∗ a l l o the r t a s k s may always be schedu l ed . ∗/

return (! IS QUANTUM TIME RECEIVER(t s k) | |
(rq−>f q . f q w a i t t i c k s == 0)) ;

}

Listing 2.7. Helper functions for fixed quantum scheduling.

2.2. Adaptation of the Exploit 23

void send (data []) {
wa i t s y n c () ;
whi le (! t r a n s m i s s i o n f i n i s h e d ()) {

s c h e d y i e l d () ;
w a i t u n t i l (ge t t ime () + t i m e s l i c e l e n g t h − e p s i l o n) ;
i d x = g e t b i t i n d e x (ge t t ime ()) ;
i f (data [i d x] == 1)

g e n e r a t e i n t e r r u p t () ;
}

}

Listing 2.8. Sending a sequence of bits (pseudo code).

void r e c e i v e (i n t e r r u p t s []) {
wa i t s y n c () ;
whi le (! t r a n s m i s s i o n f i n i s h e d ()) {

dt = mea su r e du r a t i on (i t e r a t i o n s) ;
i f (i n r e l e v a n t r a n g e (dt)) {

i d x = g e t b i t i n d e x (ge t t ime () − skew) ;
i n t e r r u p t s [i d x] += 1 ;

}
}

}

Listing 2.9. Receiving a sequence of bits (pseudo code).

2.2. Adaptation of the Exploit

In order to make the exploit function under the modified scheduler and to make it perform
with higher transmission rates than envisioned for the original version, while still guaran-
teeing to a certain degree a memoryless channel, the exploit has to be adapted. As a result,
large parts of the exploit code have been rewritten and only the channel’s basic concept (see
page 11) was retained. Due to its complexity, the full code for transmitting a bit sequence
will only be shown in the appendix (Section B.1) in favor of simplified pseudo code versions
at this point. Nevertheless, the full code is interesting as it reveals some nontrivial details
about timing issues, especially in the receiver.

2.2.1. Fixed-Quantum Compatibility

The basic difficulty in establishing an IRCC is making a sender task initiate an operation
whose result – an interrupt caused by some hardware device – happens while the receiver task
is executing. To achieve this, the sender of the original exploit yielded the CPU right after
generating the interrupt. The receiver could then, if no other tasks demand for CPU time,
immediately be scheduled and detect the interruption occurring during its runtime. This
idea however assumed a default scheduler. With the scheduler modifications, a receiver task
is blocked until the end of the sender’s full timeslice and, thus, the interrupt generated by the
sender near the beginning of its timeslice is likely to occur while the sender’s timeslice has

24 2. The Exploit

not yet expired. To achieve that even under the changed conditions the receiver is executing
when the interrupt occurs, the sender must ensure that the generation of the interrupt and
the following yielding of the CPU happens close to the end of the respective timeslice.

On modern operating systems, scheduling happens transparently to the running processes,
i.e. a task is not explicitly notified that it has just been scheduled or when it gets withdrawn
the CPU next time. While for almost all applications this is a desired behavior, it is harmful
for the exploit’s sender. Fortunately, the sender can use a function like sched yield (): On
the one hand, an invocation of this function yields the CPU and thereby gives away the
remainder of the current timeslice, but on the other hand it guarantees that when the
caller next time resumes its execution, it does so in a newly begun timeslice. If the sender
knows the timeslice length (timeslice length), then by taking the time immediately at the
beginning of the new timeslice, it can also calculate when the timeslice is expected to end.
Correspondingly, it is able to delay the generation of the interrupt until shortly before this
end of the timeslice via wait until () (see below on how to realize such a delay). Right after
generating the interrupt, the sender can then again call sched yield () to ensure that also the
next beginning of a timeslice is known.

2.2.2. Higher Transmission Rates

The original exploit was programmed to support transmission rates of a single bit in at least
three or four seconds. For this purpose, timers have enough accuracy and a short gap of,
say, one second suffices to not account an interruption to the wrong bit, which would violate
the assumption of a memoryless channel.

For a proper analysis of the exploit, it should support higher transmission rates, up to
a point where only a single interrupt’s generation and reception is possible during a bit
interval, i.e. where bit intervals are “atomic”. Assuming a timeslice duration of 100ms and
both parts of the exploit consuming always full timeslices, this atomicity would be given at
a bit interval length of 200ms. For intervals of this length or shorter, the normal timers
(as provided by the C library functions setitimer () and, especially, alarm()) do not provide
enough accuracy and, thus, timers have been removed from the exploit code completely.

When only waiting until a certain point in time, the timer can be replaced by a “busy
clock querying.” Where code is executed until a timer fires, the timer has to be replaced by
sporadic clock queries. Details about how this has concretely been done for the receiver can
be found in Section B.1.2.

Retaining a memoryless channel even without long gaps and at higher transmission rates
requires for a different transmission framework. Instead of sending and receiving single bits
sequentially with functions like in Listings 2.1 and 2.2, the transmission interval for all bits is
now taken as a whole. Then during the full interval, sending and receiving is done without
any explicit bit interval boundaries in the code. The sender tries to “send” every single
timeslice it is executing, but whether it has to send a 0 (do nothing) or a 1 (generate an
interrupt) is decided shortly before the end of the respective timeslice by (a) taking the time,
(b) computing the current bit index, and (c) finally obtaining the bit value. Analogously, the
receiver permanently receives (measures potential interruptions) and only in the case of an
interruption inside the relevant duration range, the receiver (a) takes the time, (b) computes
the current bit index, and (c) finally increases the interruption counter for the respective
bit.

2.2. Adaptation of the Exploit 25

2.2.3. Parameters

The implementation of the exploit determines the basic characteristics of the IRCC trans-
mission. For instance, sender and receiver are assumed to run alternatingly, with the sender
triggering either exactly one or none interrupt, depending on its input, for every timeslice.
The receiver during its runtime repeatedly tries to capture interruptions and counts their
number for every bit interval. Nevertheless this fundamental decision does not determine
every aspect of the exploit. Parameters at several places in the exploit can be almost freely
chosen without changing the communication paradigm, but having a huge influence on the
realization and the quality of the IRCC.

In the following, the identified parameters of the implemented exploit are grouped and
explained. Changes of the implementation however, even if they do not alter the basic
channel ideas, may introduce new parameters, modify the meaning and influence of present
parameters or even make parameters obsolete.

Timing. First and foremost, sender and receiver have to know, when the transmission
of which bit takes place. Therefore, both applications have parameters for a transmission
starting point, a bit duration and the number of bits to be transmitted. Since bits are
sent consecutively, this determines the temporal position of every bit interval belonging to
the transmission. Obviously the number of bits cannot be as freely chosen as both other
parameters, but is rather predetermined by the amount of data to be transmitted. Similarly
also another timing parameter, the timeslice length, needs to be known to the sender but is
also predetermined – in this case by the operating system.

The implementation of the receiver shows another parameter related to timing: the skew.
Its value determines how much the bit intervals in the receiver are moved into the future,
relative to the bit intervals in the sender. If, for example, the skew is set to 1ms, then for
every bit index i, this i-th bit in the receiver starts and ends 1ms later than the same bit
starts and ends in the sender. The reason why such a parameter is necessary or, at least,
useful will become clear later, when the adjustment of parameter values is examined. A
related parameter, which is not shown in the pseudo code of the channel, is the gap. This
gap is a short amount of time around bit interval boundaries, during which the receiver
has to ignore detected interruptions. It will also be further motivated and described in the
analysis part of the thesis.

Generation of interrupts. In order to trigger the later occurrence of an interrupt, the
sender in general has to call a system function, which usually requires for a list of parameters
to be specified. In case of hard disk interrupts generated via read() or write (), this would
be a file descriptor representing an opened file and its current offset, and a number of bytes
to be read or written. For NIC interrupts and the sendto() function, the parameters are a
(UDP) socket, a destination address and port, the payload length11 and potentially also a
combination of flags.

Besides the decision of how the interrupt is generated it can also be configured when,
if at all, the generation takes place within the respective timeslice. This is controlled by
the parameter epsilon from Listing 2.8, which determines how early before the end of the

11The payload itself is not considered as it does not change the characteristics of the generated interrupt
or its generation itself.

26 2. The Exploit

timeslice the sender calls the interrupt generating function. Its value must be chosen large
enough that there is enough time to call the function and subsequently yield the CPU.
It has to be small enough that the generated interrupts do not occur already within the
sender’s timeslice. Section 3.3 takes a closer look on this parameter’s influence of the channel
performance.

Detection of interrupts. Listing 2.9 shows that the receiver passes the iterations pa-
rameter to function measure duration(), which has not been changed since Listing 2.2. This
parameter indirectly controls the duration base (in Listing 2.2) of a measuring phase. Hidden
in the not shown pseudocode function in relevant range () there are also parameters used for
the decision of whether an interruption is relevant for the channel or not. In the concrete
implementation, a lower and an upper bound for the interruption duration are used to do
this task.

3. Analysis

The previous chapter shows one possibility of how an IRCC exploit can be implemented
and how an operating system can be modified such that it provides a setting in which
IRCCs might be used for circumventing security mechanisms. Based on the implementations
and their underlying concepts, the now following chapter theoretically and experimentally
analyzes, which bandwidths can be achieved in principle, and which bandwidths are achieved
by the exploit.

It will be shown that not all sender-generated interrupts are actually detected by the
receiver process and that this may be caused not only by the activities of the system en-
vironment but also by a disadvantageous configuration of the exploit parameters. For a
better understanding of this last-mentioned aspect, a generic framework will be developed
that captures the influence of parameter values on the channel bandwidth, depending on
the properties of the system. On the basis of the testing environment, as introduced in
Section 1.5, it will be shown how the framework can be applied to a real system to ob-
tain suggestions for parameter values that are expected to lead to high detection rates and
bandwidths. Finally, at the end of the chapter, it will be considered that not only may
sender-initiated interrupts remain undetected but also could other interrupts be falsely con-
sidered as originating from the sender. It will be shown how relatively small modifications
to the exploit can remarkably reduce the likelihood of such false positives .

3.1. Basic Channel Model

For the whole analysis, the implemented IRCC is modeled as a discrete memoryless channel
(I, O, P), as introduced in Section 1.4. The input alphabet I and the output alphabet O
result from the chosen implementation of the channel and, hence, do not give much leeway
to the model. By contrast, the transition matrix P is the core of the channel model. It
could be rather simple and assume a perfect, undisturbed transmission (see Section 3.2.1),
but might as well include the possibility of interrupt losses (see Section 3.2.2) or even of
arbitrarily complex forms of noise (compare Section 3.4).

Input alphabet. In the given implementation, the sender process of the channel discrim-
inates between two states for every bit: generating no interrupt at all and generating one
interrupt every timeslice in the bit’s interval. Hence, independent of the concrete bit interval
length, the input alphabet is binary, represented by I = {0, 1}.

Output alphabet. The receiver’s output for a bit is the number of counted interruptions
within the respective bit’s interval and must therefore be a nonnegative integral number.
Thus, for the output alphabet O = N is chosen. This avoids an early commitment to a
specific upper bound on the number of counted interruptions, which would not even have
an advantage for the model. For the sake of completeness it has to be mentioned that one

28 3. Analysis

could, if it is desired, for example establish an upper bound based on the maximum number
of measurings during a bit interval.1

In principle it would also have been possible to transform the counted numbers of inter-
ruptions back into binary values, with the intention that the output of the channel should
ideally equal the input anyway. While this is innocuous for the output alphabet itself,
problems arise when the transition matrix is concerned: Then it becomes important how
the transformation is realized, i.e. which numbers of interruptions are to be considered a 0

and which a 1. A bad mapping also leads to a bad channel capacity, as the example of a
“0-only” transformation points out. However, the data-processing inequality (see [CT06,
Theorem 2.8.1]) shows that even the best transformation possible can never improve the
content of the output, but may lose information. Thus, neither for the implemented receiver
nor for the model of the channel, an explicit binary output has any advantages to the choice
made above.

Channel properties. The choice of a finite input alphabet I and a countably infinite out-
put alphabet O makes the channel discrete by definition (see Section 1.4). What hence
remains to be discussed is the memorylessness of the implemented channel, requiring that
the probability p(y|x) of an output y ∈ O depends only on the current input x ∈ I and,
thus, not on earlier inputs and/or outputs. Deliberately, the exploit does not make use of
earlier outputs,2 but the exploit cannot fully exclude the possibility that involuntarily an
interrupt belonging to one bit interval is received in the respective succeeding bit interval –
or vice versa. Suchlike artifacts will be referred to as misaccountings and may be due to

– the sender being interrupted between determining which bit value is to be sent and
the actual interrupt generation (see Listing 2.8 on page 23),

– the receiver being interrupted between the end of the interruption measuring and the
determination of the bit index (see Listing 2.9 on page 23),

– the interrupt taking an unexpectedly short or long time from its generation until its
occurrence, e.g., as a result of an in-kernel or hardware delay,

– the arrival of unexpected response packets, causing additional interrupts after a longer
delay (this is specific to a NIC-based channel).

The causes named in the first two bullets are possible but unlikely, since the time window for
such interruptions is rather small. The likelihood of the third bullet depends on what times
the exploit “expects” and, thereby, on the configuration of the exploit (especially the skew

parameter). Practical experiments showed, that if exploit parameters are setup correctly
(see Section 3.3), then misaccountings are very rare – at least on the author’s hardware. At
least for the following section it will therefore be assumed that the implemented channel is
practically memoryless.

1Using symbols to be introduced later in this thesis, this upper bound would be ⌊tb/(tm + te)⌋.
2It could, for example, relate the current output to the average of the previous outputs to filter noise.

3.2. Transmission Models 29

t

S

ts

R

tr

S

R

S

R

S

R

S

R

1st bit: 0 2nd bit: 1

tb

. . .

Figure 3.1. Schematic transmission from sender (S) to receiver (R) with bit interval
length tb = 2(ts + tr).

3.2. Transmission Models

Based on the exploit implementation and the knowledge about the system’s scheduling
behavior, a model of IRCC transmissions can be constructed. Initially, to compute an upper
bound on the transmission rate, this model will completely ignore any kind of distortion.
Afterwards the model is extended by the possibility of interrupt losses.

Scheduling and synchronization. The exploit’s sender and receiver task have to run con-
currently during a transmission and, thus, require for synchronization of the single bits.
Therefore, it is first assumed that both tasks have access to the same clock having a suffic-
ing accuracy.3 Using this common clock, sender and receiver task agree on a starting time
for the whole transmission as well as on the bit interval length. As a result, both tasks have
the same view on when bit transmissions start and end, which is depicted in Figure 3.1. For
the sake of simplicity, a bit interval skew has been omitted.

The figure also illustrates how the two processes are assumed to be scheduled: Strictly
alternating and each with a constant timeslice length. Firstly, the simplifying assumption
of no disturbances also implies that no other tasks appear in the figure, next to sender and
receiver. Secondly, the scheduler’s round-robin policy ensures that right after one task has
stopped its execution, the respective other task gets scheduled, forcing the processes to take
turns. Thirdly, the scheduler dictates the timeslice length for the sender, say ts, which the
latter can neither shorten nor lengthen. Finally, the receiver in the given implementation
does never voluntarily yield the CPU or execute a blocking system function and, thus, always
uses the maximum available timeslice length, say tr. In contrast to ts, tr does not have to
be made constant for avoiding quantum-time channels, but the modified Linux scheduler
guarantees a fixed tr to simplify the analysis (see Section 2.1.2). Although the modified
scheduler implements ts = tr = 100ms, the model allows arbitrary other ts 6= tr as well.

The second bit in Figure 3.1 demonstrates how interrupts are “sent” and “received”:
Short before the end of its timeslice, the sender calls some function which causes a hardware
interrupt to occur sometime at the beginning of the following receiver’s timeslice. This
causality is indicated by an arrow. It can be seen that only one interrupt is triggered
every sender/receiver timeslice pair with duration ts + tr. In order to avoid a drift between
timeslices and bit intervals, the bit interval length tb is assumed to be a positive integral
multiple of ts + tr. As a consequence, the number of possible interrupts per bit interval does

3The question of how accurate the clock has to be will later be touched in Section 3.3.2.

30 3. Analysis

not depend on the offset that the sender/receiver timeslices have, relative to the respective
bit’s starting time.

3.2.1. Lossless Transmission

In order to obtain an upper bound on the transmission rate possible with the implemented
exploit, it is now assumed that sender and receiver are scheduled as depicted in Figure 3.1
and that all interrupts generated by the sender “arrive” at the receiver in the respective
same bit interval. Furthermore it is assumed that noise is nonexistent so that the receiver
never counts more interrupts than the sender has generated.4

The bit interval length is fixed to tb = N · (ts + tr), for some number N ∈ N \ {0} of
sender/receiver timeslice pairs per bit interval. In order to transmit a 0, the sender does not
generate any interrupts and, thus, the output of the receiver must be 0. On the other hand,
if a 1 is transmitted, then the sender generates one interrupt every timeslice pair, summing
up to a total of exactly N interrupts per bit interval which are also counted by the receiver.
The output alphabet of the channel can in this case therefore be restricted to O = {0, N}
with a probability matrix

P =

(
0 N

0 1 0
1 0 1

)

, (3.1)

where rows represent inputs and columns represent outputs.

Transmission rate. Independent of the value of N , the capacity of this channel is 1, since
the output completely reveals the input. But due to the fact that the bit duration tb is
proportional to N , it is apparent to choose the smallest possible, N = 1, for a maximal
transfer rate of 1 bit per time interval ts + tr.

Given ts = tr = 100ms, as implemented in the modified scheduler, this results in a
bandwidth of B = 5bit/s. The receiver of the exploit, however, is not necessarily forced
to consume full timeslices like it is the case for the sender. As a consequence the receiver
could, in principle, yield the CPU at an offset within its timeslices, where no interrupts
coming from the sender are expected to occur afterwards (see Section 3.4.2). With very
early interrupts and tr approaching – though obviously not reaching – 0ms, the possible
bandwidth B comes close to 10 bit/s, if ts = 100ms remains fixed.

These results can be compared to the 11.5 bit/s determined in [MS07] and the 50 bit/s
of [MS08, Example 3], which both assume ts = tr = 100ms but “transmit” multiple inter-
rupts during every sender/receiver timeslice pair. The former article, though indirectly, also
uses the number of interruptions as output; the latter additionally considers the times and
durations of interrupt occurrences.

3.2.2. Lossy Transmission

In reality, the exploit is not perfect and especially not the only tasks on the system. Con-
sequently an IRCC transmission does not proceed as perfect as shown in Figure 3.1 and,
hence, not at the maximum possible transmission rate. This section therefore refines the
model of the previous section by a parameter λ ∈ [0, 1) which is the probability for each of a

4A practical justification for this assumption can be found in Section 3.4.

3.2. Transmission Models 31

bit interval’s N possible interrupts to be either not generated or not detected. The case that
all interrupts are lost, i.e. λ = 1, is explicitly excluded from the model, because it would
already intuitively disable any IRCC transmission (see Lemma A.1) and is therefore of no
practical interest. It is furthermore assumed that the losses of interrupts are independent of
each other, not only across bit interval boundaries so that the channel is memoryless, but
also within bit intervals.

In the following, some of the reasons for interrupt losses will be introduced and the
assumption of stochastic independence will be discussed. Afterwards the refined model is
presented and further analyzed.

Other tasks. Even on a very minimalistic system there are kernel threads or, for example,
the init process that wake up from time to time to do their work. If such a foreign task
gets scheduled between a sender/receiver timeslice pair, then the interrupt generated by the
sender is likely to interrupt this foreign task instead of the receiver and, thus, the interrupt
is lost. Even if the foreign tasks gets scheduled at another position, the CPU time assigned
to it reduces the time available for sender and receiver, potentially lowering the number of
transmittable interrupts in the respective bit interval.

Whether the supposition of stochastically independent interrupt loss probabilities can be
sustained depends on the pattern with which foreign tasks execute. The following counter-
examples shall give an impression:

– A task waking up periodically with a fixed frequency makes the losses of different
interrupts dependent of each other. This dependency becomes apparent especially if
the wake-up interval is shorter than or not much longer than tb.

– If two or more tasks share the same wake-up frequency, even if it is low, then it
depends on the offset between them whether they amplify themselves within a single
bit or distribute the losses more uniformly between multiple bits.

This behavior was discovered with the pdflush kernel task and the init process,
which by default both wake up every 5 seconds. For the testing environment, the
former has therefore been configured to use a longer interval and the wake-up of the
latter has been completely turned off (see Section 1.5).

– Tasks waking up sporadically but for a longer period of time, thereby interfering with
the transmission of multiple interrupts in a row.

As a consequence it is assumed, that foreign tasks do not (a) wake up in (relatively) short
intervals, (b) share the same wake-up timer frequency, or (c) perform extensive operations
once they get scheduled. The satisfaction of these conditions can be examined on a given
system by adding logging functionality to the scheduler and evaluating its output. This is
also how the behavior of pdflush and init was spotted.

Imperfection of the receiver. An observation of the receiver implementation – even in
the pseudo code of Listing 2.9 on page 23 – shows that the receiver is not all the time
able to detect interruptions, but only while it is executing the measure duration() function.
An interruption during the evaluation of the measurement, for example, would not even be
recognized. Assuming that interrupts occur independent of whether the receiver currently

32 3. Analysis

measures or not,5 the probability of a loss corresponds to the fraction of time which the
receiver is executing outside of the measuring code.

Another reason for interrupt losses are collisions with other events, like other interrupts
or other tasks waking up within one of the receiver’s timeslices. Suchlike collisions would,
from the perspective of the receiver process, look like a single, longer interruption, which
the receiver may no longer consider as being caused by the sender and therefore ignore.

Both, the fraction of time used for evaluation and also the collisions will be subject to
a closer inspection in Section 3.3. Until then, the loss probability λ is simply treated as a
given constant that allows for a formal specification of the channel.

Transition matrix. If a 0 is sent through the implemented channel, the sender does not
generate any interrupts during the full bit interval. Consequently, the loss probability has
no influence on this case. Since furthermore by assumption there is no noise that could
falsely be counted by the receiver, the input 0 always produces the output 0.

By contrast, a 1 may now produce outputs from 0 (all interrupts are lost) to N (no
interrupts lost), including all of the intermediate values. Concerning the whole bit interval,
the transmission of a 1 can be seen as a sequence of N independent yes/no (detection/loss)
experiments – a Bernoulli trial . The number of positive results (“successes”) of such a trial
is distributed according to the binomial distribution (compare e.g. [Hoe66, 5.2.3]). In the
concrete case, the only parameter of the distribution is 1−λ, the success probability for the
detection of every single interrupt.

Putting both cases, 0 and 1, together, the transition matrix P = (p(y|x))x∈I,y∈O results,
with p(y|x) according to

p(y|X=0) =

{

1 if y = 0,

0 otherwise,

p(y|X=1) =

{(
N
y

)
(1 − λ)yλN−y if 0 ≤ y ≤ N ,

0 otherwise.

(3.2)

Theoretical capacities. Under the assumption that the loss rate λ is known, the chan-
nel capacity can be computed according to Section 1.4. The only nontrivial part of the
computation is handled by the following theorem.

Theorem 3.1. Let (I, O, P) be a discrete memoryless channel with I = {0, 1}, O = N and
P according to Equation (3.2), for some λ ∈ [0, 1) and N ∈ N. Let ρ := p(Y =0|X=1) = λN .
Then the maximal mutual information between input and output is achieved by the input
being distributed as

p(X=1) =
(

1 − ρ + ρ−ρ/(1−ρ)
)−1

and p(X=0) = 1 − p(X=1).

Based on Theorem 3.1, the computation of the channel capacity Cap is as simple as
computing the mutual information for the input being distributed according to the theorem.6

5This assumption may sound obvious but could be false if the receiver was implemented, e.g., in a way
that a new receiver timeslice always starts at a fixed code position, like it is the case for the sender.

6The full formula is not shown here due to its length, but can be found in Equation (A.1) on page 67.

3.2. Transmission Models 33

λ
N 0.1% 1.0% 10.0% 50.0%
1 0.994 0.960 0.763 0.322
2 1.000 0.999 0.960 0.558
5 1.000 1.000 1.000 0.900

10 1.000 1.000 1.000 0.994

(a) Capacity (bit)

λ
N 0.1% 1.0% 10.0% 50.0%
1 4.972 4.799 3.814 1.610
2 2.500 2.498 2.399 1.396
5 1.000 1.000 1.000 0.900

10 0.500 0.500 0.500 0.497

(b) Bandwidth (bit/s)

Table 3.1. Capacity and bandwidth under lossy transmission (ts = tr = 100ms).

The channel bandwidth also immediately resolves to B = Cap /tb. For some chosen values
of λ and N the results have been compiled into Table 3.1.

Shannon has shown in his famous paper [Sha48] that every transmission rate up to the
channel capacity is possible at an arbitrarily low error rate – provided an appropriate channel
encoding is used. Thus, it has to be considered that an attacker, who is able to implement
and use such an encoding, would choose N = 1 and would then be able to almost reach the
bandwidths shown in Table 3.1b.

Determining λ. Finding out the concrete value of λ for a given system can in principle
be performed theoretically or empirically. The latter method naturally is only possible if
the system is at one’s disposal, which might not necessarily be the case for an attacker.
However, the alternative of determining λ theoretically can easily become cumbersome even
on a small system, since it would involve modeling for example (a) the behavior of all running
tasks and their interaction with the exploit (through the scheduler), and (b) the temporal
positions of the receiver’s evaluation phases. Thus, to determine λ and check the validity of
the “lossy transmission” model, practical experiments are performed.

In order to show that both 0 and 1 are received according to the matrix described in
Equation (3.2), at first the absence of additional noise is ensured – for example by transmit-
ting a sequence of 0’s and verifying that the output is always 0. Afterwards, an alternating
sequence of zeroes and ones, (10)k, is transmitted through the channel. Transmitting the
different symbols alternatingly instead of separately (e.g. via 1k0k) is primarily intended to
show one kind of memorylessness violations: Misaccountings. If an interrupt is accounted
to a wrong bit interval, then it is almost certain that this interval belongs to a 0, which is
the immediate predecessor and successor of each 1. Since a 0 is already known to always
transform into a 0, misaccountings are immediately visible where 0’s transform to nonzero
outputs.

Once the memorylessness is witnessed, λ can be determined with the help of the maximum-
likelihood estimator (MLE, compare e.g. [Hoe66, 3.3]) for the binomial distribution: λ =
1− ȳ/N , where ȳ is the mean observed output for input 1 (see Theorem A.1). A G-test (see
e.g. [Wik08]) as one example of a goodness of fit test (compare e.g. [Hoe66, Chapter 10])
can finally be applied to test the hypothesis of whether the numbers of counted interrupts
are indeed binomially distributed. For more information about these tests, the interested
reader is referred to the above literature.

Table 3.2 shows the experimentally determined values for λ under different parameter

34 3. Analysis

Setting tm λ Cap (bit) B (bit/s) G

1 0.183µs
14.1% 0.698 3.492 0.05
14.3% 0.696 3.478 0.05

2 1.823µs
1.80% 0.935 4.676 5.28
2.11% 0.927 4.633 8.33

3 181.2µs
0.10% 0.994 4.972 0.02
0.34% 0.984 4.918 23.3

4 724.8µs
0.31% 0.985 4.924 43.8
0.32% 0.984 4.922 42.8

5 1105µs
1.02% 0.959 4.796 0.03
3.57% 0.889 4.447 0.15

6 1275µs
10.9% 0.748 3.740 30.1
15.4% 0.680 3.399 31.8

Table 3.2. Experimentally determined λ for different parameter settings.

settings.7 For each setting, two transmissions of the bit sequence (10)8000 were conducted
with N = 2 and the default timeslice lengths ts = tr = 100ms. Every single transmission,
thus, took roughly 13/4 hours. What the table does not show is that for each experiment there
were no misaccounted interrupts. Capacities and bandwidths are based on the respective
value of λ only (not on the practically determined values for p(y|X = 1)) and use N = 1.
Without going into detail about the meaning of the settings, which will later be the subject
of Section 3.3, it can be seen that for instance Settings 3 and 4 yield interestingly low loss
rates and corresponding high capacities and bandwidths, while the outcomes of Settings 1
and 6 are significantly worse.

Finally, the G values of the table’s last row shall be compared to the values of the χ2

distribution for 1 degree of freedom.8 In case of a Type I error (the probability of rejecting
a true hypothesis) of 5%, one obtains χ2 ≈ 3.841 (see [Hoe66, p. 401]). Since this value
is exceeded by most of the G values, especially in Settings 4 and 6, the hypothesis of
a binomial distribution and, with it, also the assumption of stochastically independent
interrupt losses, should at least be considered questionable. Despite the results of the G-
test, the assumption of a binomial distribution is sustained for three reasons: (a) The test
did not reject the hypothesis in all cases but instead for some experiments yields even very
low values. (b) The outputs even in case of large G values were not completely dissimilar to
the binomial distribution but showed only comparatively large values of p(Y =0|X=1). (c) It
was expected in advance that the binomial distribution is only an approximation (compare
page 31).

It is unexplained why in most cases the computed G values belonging to one parameter
setting are almost equal. The transmission logs belonging to the experiments, which show
the concrete numbers of generated and detected interruptions for each bit, did not give any
hints.

7More about the parameter settings used for the experiments can be found on pages 49 and 53.
8The degree should be k − 1 − l for k observed values and l distribution parameters [Hoe66, 10.4]. Here

k = N + 1 = |{0, . . . , N}| and l = 1 for only λ.

3.2. Transmission Models 35

Bandwidth (bit/s)

B
E

R
(l
og

1
0
)

543210

0

-3

-6

-9

-12

-15

-18

λ=0.1%

λ=1%

λ=10%

λ=50%

Figure 3.2. Bandwidth and bit error rates (ts = tr = 100ms, N ≤ 4, l ≤ 31).

Simple encodings. If, for some reason, an attacker is not able or willing to implement
a sophisticated encoding that approximates the channel capacity, he/she might fall back
to a simpler method: Thresholds. To determine which bit has potentially been sent, the
receiver compares the counted number y of interrupts within a bit interval against a certain
threshold value τ . For y ≥ τ , the output y is then decided to be a 1, for y < τ it would be
a 0.

Theorem 3.2. Let Tτ : O → I be a function transforming channel outputs into expected
channel inputs according to threshold τ ∈ N: Tτ (y) = 1 iff y ≥ τ . Let Pτ be the transition
matrix resulting from P when applying Tτ to the outputs of (I, O, P). Then

Cap(I, I, P1) = max
τ∈N

Cap(I, I, Pτ) = Cap(I, O, P).

The capacity of the lossy channel is thus not reduced by choosing a threshold of τ = 1.
Furthermore, all other threshold values might only lead to lower capacities but never to
an increased one. A similar result can also be found for the bit error rate (BER), i.e. the
probability that the output (after applying the transformation function) differs from the
input.

Theorem 3.3. Let, for τ ∈ N, Tτ and Pτ be defined as in Theorem 3.2. Then for all τ ∈ N

with Cap(I, I, Pτ) > 0 it holds that p(T1(Y) 6=X) ≤ p(Tτ (Y) 6=X).

The optimal threshold τ = 1 of Theorems 3.2 and 3.3 is rather intuitive: All 0 inputs are
“guessed” correctly and only those 1 inputs wrongly for which no interrupts are detected
during the respective bit interval. Larger threshold values would only identify more 1 inputs
falsely as a 0. The only possible lower threshold, τ = 0, would identify all 0 inputs falsely.

If a threshold of τ = 1 is used for the encoding, then the most simple approach for lowering
the error probability is to increase N , since counting not even a single interrupt in a bit’s
interval is less likely the more interrupts have (potentially) been generated.9 Obviously,
longer bit intervals also decrease the bandwidth, so there is a tradeoff between speed and
reliability.

9Formally, for λ ∈ (0, 1), p(Y =0|X=1) = λN is strictly monotonic decreasing with increasing N .

36 3. Analysis

t

D(t)

Sender

Receiver

. . .
�

τ0

�

τ1

�

τ2

�

τ3

�

τ4

�

0
�

: Timer interrupt
�

: Timer & scheduler : Interrupt generation

Figure 3.3. Refined model including timers and variable interrupt delay.

Next to varying N , also error correcting codes can be applied to reduce the error rate. For
an example, the simple and popular Hamming codes have been chosen, which introduce the
block length l as a new parameter and are able to detect and correct a single erroneous bit
inside a block. Figure 3.2 shows that even at a relatively high loss probability of λ = 10%
the error rate can easily be reduced below one in a million while at the same time staying
above 1 bit/s.10 The figure is based on the assumption that p(X=0) = p(X=1) = 0.5 and
shows the discrete computed values connected for a better readability.

3.3. Adjusting Exploit Parameters

The present model focuses on the very basic idea of the implemented IRCC exploit: Sender
and receiver are scheduled alternatingly and at most one interrupt is “transmitted” every
timeslice pair. Based on Theorem 3.1 attackers as well as potential victims are able to
estimate the value or, respectively, threat to a certain target system resulting from the
given exploit. The potential victim could simply be pessimistic, assume a low loss rate λ
and, from the computed channel capacity, evaluate whether and which countermeasures
against this kind of channel are needed. By contrast, an attacker is not only interested in
the possible transmission rate itself but has to configure his/her exploit instance properly to
make it achieve optimal or at least close to optimal transmission rates when run on a target
system. Table 3.2 on page 34 has already shown that the value of even a single exploit
parameter can have a significant influence on the performance of the exploit. Therefore, in
the following section a generic framework is developed that describes the interdependencies
between (a) the exploit and its configuration, (b) the system, and (c) the loss rate and
the possibility of misaccountings. This framework thereby on the one hand deepens the
understanding about IRCCs, and on the other hand allows for finding suitable or even
optimal configurations. The benefit of this framework will be demonstrated by applying it
to a concrete system, namely the testing environment of Section 1.5.

In order to make propositions about good choices for the values of exploit parameters
at all, the system model has to be refined so that it also considers events on a time scale
below the length of timeslices. This refinement is illustrated in Figure 3.3, which focuses
on a single receiver timeslice from the second bit – a 1 – of Figure 3.1. The figure adds

10The bit error rates for Hamming codes have been computed according to Section A.3.

3.3. Adjusting Exploit Parameters 37

two new, fine-grained aspects to the IRCC transmission: Timer interrupts and a variable
delay from the generation of an interrupt in the sender until its later occurrence. In this
example, there are four timer interrupts during the receiver’s timeslice, of which the last
triggers a task switch, here back to the sender. The variable interrupt delay is indicated by
two imaginary probability density distributions at the bottom of the figure. To begin with,
both new aspects and reasons for their relevance to the exploit will be taken a closer look
at. Afterwards also a third, resultant aspect is highlighted.

Timers. Modern, multitasking operating systems require for timer interrupts in order to
gain control about the system from time to time and then do routine work like, e.g., schedul-
ing another task. Current Linux kernels like the one used for this thesis allow the timer
frequency being set to 100Hz, 250Hz, 300Hz or 1000Hz.11 Assuming a timeslice length
of 100ms, this means 10 to 100 timer interrupts within a single timeslice and, thus, the
mere possibility of a “collision” of timer and sender-initiated interrupts cannot generally be
neglected. In this context, the collision of interrupts denotes the occurrence of one interrupt
during the execution of another interrupt’s handler.

An important detail to note is the times at which the switch from the sender to the
receiver process happens: Immediately after a timer interrupt. This is the result of the fixed
quantum scheduling (precisely, the code of Listing 2.6d on page 21), which treats the sender
like a CPU-hog consuming up the full timeslice at its disposal. Since the sender generates its
interrupts relative to the end of its timeslice, i.e. relative to the timer interrupt responsible
for the task switch, the occurrence of these interrupts is not temporally independent of the
occurrence of timer interrupts. In other words, timer interrupts always occur at rather fixed
positions compared to the occurrence distribution of the sender-initiated interrupts.

Interrupt delay. Usually, an interrupt is raised by a device to indicate the completion of
an action to the operating system. In case of the exploit, the action is initiated by the
sender calling a system function. Depending on the device (NIC, hard disk, etc.) and its
current status (position of mechanical parts, sleep state, etc.), carrying out the action may
take more or less time. Hence, for the same action demanded from a device, the delay until
the occurrence of the completion interrupt is not a constant but is subject to a probability
distribution. Such a distribution might resemble one of the two imaginary examples of
Figure 3.3 but may as well be more complex, containing multiple maxima or being rather
discontinuous.

A necessary condition for an IRCC to be possible is that at least a nonzero fraction of all
sender-initiated interrupts occurs while the receiver is executing, since the remainder likely
cannot be detected by the receiver. Nevertheless not only the receivable fraction but also
its delay distribution is of importance, because it has an influence on how often the sender-
initiated interrupts collide with or occur close to timer interrupts. Given a very narrow
delay distribution it could be that either the sender’s interrupts always collide with a timer
interrupt, or they always do not. Figure 3.3 depicts an example of such a distribution with a
single, narrow peak shortly after a timer interrupt. In this case, collisions would never occur.
But if the peak was positioned slightly earlier in the figure, then its majority would overlap
with the timer and, thus, result a high likelihood of collisions. In contrast, the broader

11“Dynamic ticks”, which are available since Linux 2.6.21, are not considered in this work.

38 3. Analysis

distribution shown in the figure could be moved along the time axis without much changes
in the probability of collisions between timer interrupts and sender-initiated interrupts.

It has to be noted that the delay distribution is not fixed with the choice of the interrupt
source but may also depend on parameters that are – directly or indirectly – passed to the
interrupt generating system function. In case of the NIC as the interrupt source, sending
larger packets tends to cause longer delays; in case of a hard disk, one might try to alter
between reading data blocks from inner and outer cylinders to elongate the delay.

Interrupt duration. After an interrupt request is signaled to the CPU, the currently run-
ning task is interrupted and execution is switched to an interrupt handler, which then tries
to find out the reason for the interruption, handles it and afterwards switches back to the
initially interrupted task.12 The duration of the interruption is therefore determined by
the amount of kernel and device driver code being executed. The receiver should know the
range of possible durations of the chosen interrupt source as good as possible in order to
make its decision of whether an interruption is sender-initiated or not as reliable as possible.
Nevertheless it may in principle happen that the durations of other interruptions, like e.g.
a timer interrupt, intersect with the durations of sender-initiated interrupts. Since however
the current model does not allow for this situation (it would result in p(Y >0|X=0) 6= 0), the
framework does also not include the purpose of optimizing the configuration of the receiver’s
interrupt classification parameters. At the same time this avoids the requirement of knowing
duration distributions for noise which in turn are expected to be harder to determine than
the durations of the sender-generated interrupt. Section 3.4 will give a practically oriented
justification for this choice.

Skew and gaps. Both exploit processes query the clock to determine the current bit index
temporally close to the generation and, respectively, reception of an interrupt. Listings 2.8
and 2.9 on page 23 indicate how this is realized in the concrete implementation. Due to the
interrupts’ delay and duration, the detection happens some time after the generation, but
nevertheless both events should be accounted to the same bit index. To achieve this, bit
intervals in the receiver are shifted into the future by some amount which will be referred
to as the bit interval skew .

If the interrupt delay always was a constant, then a correctly chosen skew would suffice
for preventing misaccountings. But as explained above, this is not necessarily the case
and therefore, no matter what bit interval skew has been chosen, interrupts may still be
accounted to the wrong bit index. If an interrupt is generated shortly before the end of one
(sender’s) bit interval and the delay by coincidence is longer than the chosen skew, then the
interrupt is detected within the (receiver’s) following bit’s interval. On the contrary, if the
interrupt is generated shortly after the beginning of a new bit interval and the interrupt
delay is shorter than the skew, then the interruption is accounted to the preceding bit index.
This leads to a situation where the input belonging to one bit index influences the output
belonging to another – the immediately succeeding or preceding – bit index. Hence, such a
channel must not be considered memoryless unless misaccounting is very rare. The chosen
solution to the problem is a gap in the receiver between every pair of subsequent bit intervals,

12The operating system may as well decide to schedule another task based on potentially changed conditions
resulting from the interrupt, like some high priority task previously waiting for data being unblocked.

3.3. Adjusting Exploit Parameters 39

such that all interruptions detected during this gap are simply ignored. Obviously the gap
has to be chosen long enough to “absorb” the variation of the interrupt delay.

Instead of ignoring interrupts that were detected during a gap, the receiver task could as
well store this information separately in order to not lose as much information. In the later
evaluation of the output, the attacker might then be able to infer13 or guess to which bit
interval the interrupt should have belonged.

The above considerations depend very much on how short the temporal distance between
the interrupt generation (which is preceded by a clock query) and the bit interval bound-
aries can become. Shorter distances potentially increase the likelihood of misaccountings
and therefore demand for longer gaps and a precisely setup skew. Figure 3.1 on page 29
simplifyingly omits a bit interval skew and shows all bit interval boundaries at times where
a task switch from the receiver to the sender happens. As a consequence of the latter, the
sender queries the clock at least approximately ts after a bit interval boundary, and at least
approximately tr before. Misaccountings in this model could therefore almost be excluded,
since the variation of the interrupt delay is not expected to exceed the timeslice lengths
tr and ts. In practice, however, it is, if possible at all, not trivial to guarantee that bit
intervals and timeslices adhere to suchlike synchrony. Even if bit interval boundaries are
placed at a switch from the sender to the receiver at the beginning of the transmission, the
distance between the bit interval boundaries and the sender’s clock queries may vary and, in
particular, shrink during the transmission. Two apparent reasons14 to be examined below
are (a) other tasks which wake up during the transmission, and (b) a bit interval length
which is not an exact integral multiple of ts + tr.

From a realistic setting, other tasks than the two exploit processes cannot be excluded.
There are always at least also kernel tasks and system processes (like init), which usually
are not all asleep for the whole time. Thus, once such a task wakes up, it will finally get
scheduled and thereby shift all following timeslices of the exploit processes into the future
by some amount of time. By construction, the bit intervals remain unaffected, as they are
fixed in time and not in the number of passed sender/receiver timeslice pairs.15

The previously described effect is only able to cause shifts which are integral multiples of
the timer interval, because timeslice lengths are not determined by polling the clock but by
counting timer interrupts16 which Figure 3.3 on page 36 illustrates. A sophisticated exploit
implementation could use this property of the scheduler and guarantee that bit interval
boundaries keep at least a certain minimum distance (e.g., half a timer interval in both
directions) to the sender’s clock queries, for instance by determining when timer interrupts
occur already prior to the transmission and placing bit interval boundaries accordingly.
Thus, even though the execution of other tasks reduces the minimum distance from the
scale of timeslice lengths to the length of timer intervals, a reduction arbitrarily close to
zero is impossible, independent of the execution times of these tasks.

This minimum distance may completely vanish if bit interval lengths are not exact integral

13If N interrupts were already detected for one bit, then another interrupt occurring during the preceding
or succeeding gap must belong to the previous or, respectively, next bit interval.

14Further causes may be possible but are expected to be at least less significant.
15An implementation based on timeslice pairs would be harder to realize (the timeslice notion would have to

be implemented into the receiver) and potentially more susceptible to misaccountings due to disturbances
by other tasks.

16This is the result of a design choice of the (original) scheduler, which could instead also setup timers such
that they occur only at times when they are known to be needed.

40 3. Analysis

multiples of ts+tr, because then a permanent drift between timeslices and bit intervals takes
place. Over the course of a transmission, the single drifts of every bit, even if they are small,
quickly accumulate and destroy the minimum distance of the last paragraph. Even small
deviations from the actual timeslice pair length ts + tr of, say, 0.01% add up to 10ms (i.e.
one timer interval at 100Hz timer frequency) within a transmission of only 100 s. Thereby
the bit interval boundaries might be taken almost arbitrarily close to the sender’s clock
queries. A guarantee like the one proposed in the previous paragraph would under these
circumstances simply be impossible.

Earlier in this chapter, tb = N(ts + tr) for N ∈ N was introduced as a requirement for the
formal model and, thus, one might think that the mentioned drifts cannot occur as long as
the exploit adheres to this requirement. In practice the problem can nevertheless arise since
the exploit might only be able to determine ts + tr approximately and would then be unable
to deliberately choose tb as an integral multiple. The later study of the concrete instance
(in Section 3.3.2) will demonstrate that accurately determining the actual timeslice lengths
is everything else but trivial.

3.3.1. A Generic Framework

For an attacker, the right choice of exploit parameter values is important as it influences the
likelihood of interrupt losses as well as of interrupt misaccountings. Thus, these both aspects
of the IRCC are the subject of the generic framework: Interrupt losses are to be minimized
and interrupt misaccountings are to be avoided at all. Although both aspects are related –
longer inter-bit gaps for instance may increase the loss rate – they are examined in isolation
in separate parts of the framework for the sole purpose of an easier understanding. The
existing interdependency of both parts must however be kept in mind when the framework
is applied to a concrete system.

Both parts first identify a set of relevant system parameters, like e.g. the interrupt delay
or the timer frequency. However, due to the complexity of the overall system, including
hardware and software, no claim is raised that the set of parameters is complete. Other
influences may still exist but are at least expected to have only a minor impact on the
choice of exploit parameter values.

Often these parameters are not constants but probability distributions (over time), which
for the sake of a simple formalism are then assumed to be continuous and integrable.17

Furthermore the framework relies on the assumption that these system parameters do not
change over time, which implies also independence from the duration of channel usage (a
requirement for memorylessness).

Besides the system parameters, each part of the framework is concerned with a set of
exploit parameters whose values need to be determined for running the exploit. The dis-
tinction between system and exploit parameters is not always unambiguous. For example
the interrupt delay (a putative system parameter) may strongly depend on the parameters
to the interrupt-initiating function (exploit parameters). In case of a NIC-based channel,
this especially applies to the packet length, which determines the time required to send out
the packet over the cable before the completion interrupt is raised.

17Wherever a distribution turns out to be discrete and has to be treated as such, necessary changes to the
framework are expected to be only of rather symbolic nature (like substituting “

∫
” by “

∑
”).

3.3. Adjusting Exploit Parameters 41

Interrupt Losses

The reason for an interrupt loss that probably comes to mind first is that another process
than the receiver is executing while the interrupt occurs. This problem however is hard to
influence from within the exploit, as the kernel is in principle free to choose whether other
ready tasks are scheduled between sender and receiver. More interesting for the configuration
of the exploit are those interrupts that go astray even though they occur while the receiver
is executing. Their likelihood is determined by the configuration of the exploit and is, thus,
subject of the framework.

Before coming back to the explanation of why the receiver may lose interrupts, first
the underlying system parameters and their symbols are introduced, beginning with those
related to timers. As a convention, the call of the interrupt-initiating operation happens
at time t = 0. The first ensuing timer interrupt of interest is the one that causes the task
switch from the sender to the receiver, at the yet unspecified time τ0 > 0. From then
on, all following timer interrupts take place with constant frequency f at points in time
τi = τ0 + i · T , where T := f−1 is the timer interval . In addition to a starting time, every
timer interrupt with index i also entails the execution of an interrupt handler with a duration
ci. The distinction between the different timer interrupt durations ci is primarily introduced
because some interrupts may be known to take longer or shorter than others. For example,
c0 includes the overhead for the task switch, while all other ci do not.18

In favor of a more concise notation, values like ci or τi are treated as constants instead of
results of stochastic processes. This is based on the assumption that even if the values should
vary, then only with a very small deviation from a certain mean. The same also applies
to many of the values to be introduced below. Nevertheless, this is not to be considered
a limitation of the framework, since the framework is more a conceptional than a formal
guide. Thus, the user of the framework can finally choose whether constants are appropriate
or whether it is necessary to work with discrete or continuous distributions for obtaining
accurate results.

The second group of system parameters contains those related to the interrupts that
are generated by the sender. At first, the interrupt generation itself takes some time tg,
consisting of the runtime of kernel code and the time to communicate the respective request
to the device. After the device has carried out the request, it raises the desired interrupt.
The duration from the beginning of the interrupt generation until the occurrence of the
interrupt, the interrupt delay , is referred to as D. In contrast to all other variables in
this part of the framework, this delay is explicitly treated as a probability distribution (i.e.
D(t) ≥ 0 for all t, and

∫ ∞

0
D(t) dt = 1). This choice has been made since, depending on

the chosen interrupt source for the channel, interrupt delays might strongly vary (as already
mentioned in the discussion corresponding to Figure 3.3 on page 36). Finally, the duration d
of the interrupt handler completes the list of the sender-initiated interrupt’s properties. All
three of these interrupt-related system parameters may actually be influenced by varying
the parameters to the interrupt-generating system call, but this relation is not explicitly
further covered by the framework.

Yet another category of parameters are those that depend on the implementation of the
exploit but cannot be freely chosen. For this part of the framework this is only the evaluation
duration te which corresponds to the (uninterrupted) execution times of in relevant range (dt)

18The task switch from the receiver back to the sender is considered to be temporally too far away from
the interrupt generation to be relevant.

42 3. Analysis

f : Timer interrupt frequency.
T : Timer interrupt interval.
τi: Time of the i-th timer interrupt, relative to the interrupt generation.
ci: Duration of the i-th timer interrupt.

tg: Duration of the interrupt-initiating operation.
D: Delay from generation to occurrence of sender-initiated interrupts.
d: Duration of sender-initiated interrupts.

te: Runtime of the evaluation of a measuring in the receiver.

ε: Temporal pre-position of the interrupt generation wrt. the end of the
sender’s timeslice.

tm: Runtime of an uninterrupted measuring in the receiver.

Table 3.3. Framework parameters related to interrupt losses.

and transmission finished () in Listing 2.9 on page 23. More precisely, te represents only the
evaluation in case of a negative result, as otherwise it would already be known that the
interrupt is not lost. Thus, especially the determination of the bit index and the logging of
the detected interrupt in the positive case are not included.

Finally there are the actual exploit parameters. In case of the sender this is the amount
of time that the generation of the interrupts is started before the end of the respective
timeslice, which, in absence of another concise term, is called the (temporal) pre-position ε.
Listing 2.8 on page 23 shows this parameter as epsilon . An attacker should choose ε such that
ε ≥ tg as this ensures that the interrupt generation completely fits into the timeslice which
it is started in. Otherwise, if the condition was violated, the interrupt-initiating request
might be delivered to the hardware device at the beginning of a new timeslice, during which
then in all likelihood also the completion interrupt would occur. Parameter ε determines
the temporal coordinates of the timer interrupts through τ0 = ε, since at τ0 the sender’s
timeslice ends and the task switch to the receiver is performed.

The receiver comprises a parameter that influences the loss rate, too. This is the measuring
duration tm, which corresponds to the (uninterrupted) execution time of waste(iterations)

in Listing 2.2 on page 13. The choice of iterations fixes the number of times that a small
portion of code is repeated in a loop and therefore indirectly determines the value of tm.19

Table 3.3 presents an overview with a short summary for all the above system and exploit
parameters of the framework. The interrupt loss probability can now be expressed as

λ =

∫

D(t) · l(t) dt, (3.3)

where l(t) is the yet unknown probability of losing the interrupt if it occurs at time t, relative
to the time of interrupt generation. For the further analysis of l(t), the temporal axis is
divided into five disjoint ranges, (i) to (v), as illustrated in Figure 3.4. These correspond to
different causes for the interrupt not being detected by the receiver. The figure visualizes
how the ranges result from the various system and exploit parameters. Ranges (iii) to (v)
consist of several subranges, which repeat for every timer interval the receiver’s timeslice, as

19Note that, especially for small iterations , the relation between tm and iterations is not necessarily
linear as one might expect.

3.3. Adjusting Exploit Parameters 43

t

Sender

Receiver

τ0 τ0 + c0

�

ε

d tm tm d

τ1 τ1 + c1

�

tg

0

(i) (ii) (iv) (v) (iv) (iii) (iv) . . .

Figure 3.4. Ranges of different collision and loss probabilities.

the “. . . ” in the figure indicates. The following enumeration presents the formal definition
of the different ranges and explains how these ranges influence the loss probability l(t) at
that point in time.

(i) 0 ≤ t < τ0 − d. The sender-initiated interrupt occurs during the sender’s timeslice and
early enough to not collide with the following timer interrupt.

It is expected that interrupt occurrences during this range are hard or even impossible
to detect. At least for the given exploit implementation, this range implies l(t) = 1 for
all times t within the range.

(ii) τ0 − d ≤ t < τ0 + c0. The sender-initiated interrupt collides with the timer interrupt
responsible for the task switch to the receiver.

Due to the collision, the receiver cannot detect the interruption resulting from the
sender-initiated interrupt by itself. It may however be able to detect the induced
elongation of the time span between the last switch away from the receiver back to the
receiver again. If not, then l(t) = 1.

(iii) τi − d ≤ t ≤ τi + ci for some i > 0. This range corresponds to (ii) but for a timer
interrupt fully within the receiver’s timeslice.

The detection of an interrupt occurring within this range is potentially simpler than it
is within the previous range, since here the interruption consists only of two interrupts
(with approximate duration d+ ci) but no task switch. Again, if the receiver is unable
(or unwilling20) to detect this kind of collisions, l(t) = 1 holds.

(iv) τi + ci < t < τi + ci + tm or τi+1 − tm < t + d < τi+1 for i ≥ 0. A collision between
sender-initiated and timer interrupts is not possible but the receiver may nevertheless
measure both interrupts within the same measuring phase (if no evaluation phase falls
between both interrupts). For the receiver this would then resemble a collision, but
will here be referred to as a compound measuring .

In the very first subrange (τ0 + c0 < t < τ0 + c0 + tm), a compound measuring would
be as hard to identify as in range (ii). Analogously, compound measurings in all other
subranges are related to range (iii).

20The receiver could deliberately ignore interruption durations d + ci e.g if there are other events resulting
in interruptions of this duration.

44 3. Analysis

(v) Otherwise the sender-initiated interrupt does neither collide with a timer interrupt
or task switch, nor will it be measured together with one. Thus, unless the receiver
explicitly favors collisions or compound measurings, the exploit should be configured
that sender-initiated interrupts occur within this range.

Even though the intention of the above ranges is to facilitate the determination of loss
probabilities l(t), concrete values or formulas have intentionally been omitted in their ex-
planations. This is because unless it is known that the receiver cannot detect interrupts
occurring within a certain range (i.e. l(t) = 1), the loss probability is determined by (a) the
probability that the interrupt occurs during an evaluation phase, (b) the likelihood of a
collision or compound measuring with other events, like sporadic interrupts or other tasks
awaken after such an interrupt, and (c) the probability for a sender-initiated interrupt to oc-
cur during an inter-bit gap. All these influences are not explicitly modeled here but instead
only discussed. The first cause for interrupt losses alone might lead to a loss probability
of te/(tm + te), if occurrences are uniformly distributed on the measuring/evaluation cycles
of length tm + te. Other distributions could as well lead to interrupts either being never or
being always lost due to occurrences within an evaluation phase. The distribution of the
“other events” in the second cause for interrupt losses is similarly decisive, but potentially
more complex. A simple example will be presented later in the concrete instance. Finally,
the gaps as the last listed cause for interrupt losses form the connection between this first
part of the framework with the part dealing with interrupt misaccountings.

The aim of the attacker should now be to select values of ε and tm that make all or at least
most of the sender-initiated interrupts occur during range (v) within a measuring phase.

Interrupt Misaccountings

Earlier explanations already showed why interrupts may be misaccounted and what can be
incorporated into the exploit (and hence the model) to avoid this: A bit interval skew σ
and an inter-bit gap γ. The skew denotes the temporal distance between the sender’s and
the receiver’s bit interval boundaries. For instance, σ = 1ms means that the bit intervals
as seen by the receiver begin and end 1ms after they begin and, respectively, end in the
notion of the sender. By convention, one half of the gap takes place before every receiver’s
bit interval boundary and the other half afterwards. Thus, for every a interval boundary at
time t there is a gap during the interval [t − γ/2, t + γ/2].

This part of the framework again introduces additional system parameters. To begin
with, there is the temporal distance between the sender’s clock queries (shortly before the
interrupt is generated if the bit is determined to be a 1) and the succeeding bit interval
boundary. During long transmissions, this distance may vary for reasons that have already
been discussed, even though not completely independent from prior distances. Neverthe-
less, the distance is modeled as a probability distribution B, defined on interval [0, tb) (i.e.
∫ tb
0

B(t) dt = 1), under the assumption of a reasonably long transmission.21 The intention
of this distribution is to constitute a generalized notion of the minimum temporal distance,
which has already been motivated in the introduction to the framework. Its shape is partly
determined by the system, through the scheduling of other tasks or variations of the timer

21This is again a situation where a more sophisticated exploit implementation could explicitly note prior
distances and continuously adapt the value of σ based on this knowledge.

3.3. Adjusting Exploit Parameters 45

B: Probability distribution for the temporal distance between clock queries
of the sender and bit interval boundaries during a long transmission.

M : Probability distribution for the temporal distance between the occurrence
of a sender-initiated interrupt and the end of the measuring phase it occurs
in.

Z: Random variable representing the delay from the interrupt generation by
the sender until its detection in the receiver.

σ: Temporal skew between sender’s and receiver’s bit interval notions.
γ: Duration of the gap between bit intervals in the receiver.

Table 3.4. Framework parameters related to interrupt misaccountings.

t

Sender

Receiver

(D⊕d⊕M)(t)

0

Bit i Bit i + 1

Bit i Bit i + 1

σ

γ

Figure 3.5. Bit intervals from the perspective of sender and receiver, if sending may
happen arbitrarily close to bit interval boundaries.

frequency, but also determined by the exploit and, for example, its accuracy in the choice
of tb as an integral multiple of ts + tr.

The second and last system parameter for this part of the framework is the probability
distribution M , defined on the interval [0, tm) (i.e.

∫ tm
0

M(t) dt = 1). Every M(t) gives
the (conditional) probability density of an interrupt occurring with temporal distance t
to the end of the surrounding measuring phase (given that it occurs during a measuring
phase at all22). In other words, such a distance t represents the amount of time that passes
from the occurrence of the interrupt until the receiver starts evaluating whether there was
an interruption. This distribution is of interest because longer measuring durations tm
potentially increase the uncertainty about when inside the measuring interval the interrupt
actually occurred. A higher uncertainty in turn may require for a longer gap to avoid
misaccounted interrupts. Also the skew may have to be chosen higher due to the increased
average delay until the evaluation. It has to be remarked that M depends not only on tm
but also on D, if the measuring intervals have fixed offsets within the receiver’s timeslices.

An overview of the additional parameters introduced for capturing interrupt misaccount-
ings is given in Table 3.4.

The aims of the adjustment of σ and γ are (a) making misaccounted interrupts impossible
or at least sufficiently unlikely, and (b) minimizing the probability of detecting interrupts
during the gap (i.e. avoiding unnecessarily large gaps). Therefore, let Z be a random vari-
able indicating the duration from the time of interrupt generation, until a sender-initiated
interrupt is detected, if it is detected at all. It is distributed according to the convolution

22Lost interrupts cannot be misaccounted!

46 3. Analysis

of D, d and M , written here as D ⊕ d⊕M .23 Unlike in the first part of the framework, the
interrupt duration d is here formally treated as a probability density function for the sole
reason that it does not complicate the notation.

Figure 3.5 illustrates the problem of interrupt misaccountings and visualizes the relevant
parameters (except for B). At the very beginning, on the left of the figure, the sender is
executing and is still in its i-th bit interval. Close to the end of its timeslice the sender has
to query the clock, compute the bit index at the obtained time and, depending on the bit’s
value, immediately afterwards either generate an interrupt (as it is shown in the figure) or
not. The figure now depicts the situation where the transition to the (i + 1)-th bit interval
coincides with the time at which the sender queries the clock for the bit index, such that it
is unclear to which bit interval the generated interrupt belongs. Now the problem is how the
receiver should treat such a borderline interrupt. The figure shows an imaginary distribution
for Z, which indicates when and with which probability (density) the receiver is expected
to detect the interrupt. Thus, the grayed range corresponds to an interval during which
sender-initiated interrupts can occur, which the receiver cannot surely assign to either bit
index, i or i+1. This range should therefore be declared as the gap. All interrupts occurring
before can correctly be attributed to bit i, all interrupts occurring afterwards must belong
to bit i + 1. To achieve this, the skew σ should be chosen to shift the receiver’s bit intervals
into the future by the right amount, as the figure shows.

The figure actually considers the “worst case” where B(0) > 0 and sender’s clock queries
and bit interval boundaries may thus coincide. Nevertheless the width of the support of Z’s
distribution, i.e. the variability of the interrupt detection time, might demand for a gap
also if the minimal temporal distance between the clock queries and interval boundaries is
nonzero but small enough.

Given Z, the requirement of not misaccounting an interrupt can be formulated as

∫ tb

0

B(δ) · p(−(tb − δ) + σ − γ/2 ≤ Z ≤ δ + σ + γ/2) dδ
!
= 1, (3.4)

where the lower boundary for Z is the beginning of the previous gap and the upper bound
is the end of the following gap. The variable of integration, δ, ranges over all possible
distances to bit interval boundaries. Analogously, the probability of a correct reception
between (excluding) the gaps can be expressed as

ξ :=

∫ tb

0

B(δ) · p(−(tb − δ) + σ + γ/2 < Z < δ + σ − γ/2) dδ. (3.5)

Combining losses and misaccountings. If a gap is determined to be necessary for satisfy-
ing Equation (3.4), then this gap must also be considered in the first part of the framework.
Since any detected interrupt that occurred during a gap has to be ignored by the receiver,
this situation effectively equals an interrupt loss. Its probability 1 − ξ has to be consid-
ered when computing the loss rates l(t). The interdependency between both parts can be
illustrated by how different terms influence (“→”) each other:

tm → M → γ → ξ → l(t) → tm.

23If the receiver successfully detects the desired interrupts even in case of collisions with other events, the
distribution becomes more complicated.

3.3. Adjusting Exploit Parameters 47

Samples Mean Std.dev. Minimum Maximum
RTL8029 Generation 20000 165.05µs 1.042µs 164.22µs 218.25µs

Delay 12543 1326.02µs 0.694µs 1325.22µs 1379.19µs
Duration 12543 15.19µs 0.196µs 15.02µs 19.20µs

RTL8139 Generation 20000 7.73µs 1.097µs 7.25µs 81.05µs
Delay 12525 125.61µs 0.767µs 125.30µs 199.01µs
Duration 12525 8.28µs 0.194µs 8.10µs 10.34µs

Table 3.5. RTL8029 (10Mbit/s NIC controller) and RTL8139 (100Mbit/s NIC con-
troller), sending broadcast UDP packets with 1400 bytes payload.

Task switch Samples Mean Std.dev. Minimum Maximum
No Kernel 12000 5.977µs 0.332µs 5.676µs 19.323µs

Userspace 25000 6.602µs 0.302µs 6.312µs 7.781µs
Yes Userspace 27614 7.694µs 0.201µs 7.218µs 8.887µs

Table 3.6. Timer interrupt durations with and without task switch.

3.3.2. A Concrete Instance

In order to demonstrate how the generic framework can be used to determine a configuration
tailored to a given concrete target system, it is applied to the author’s testing environment
as introduced in Section 1.5. Even though the computations that will follow are based on
assumptions about the target system, large parts have been kept as generic as possible. This
has the intention that these parts can easily be adopted also for other targets with similar
properties.

Firstly the exploit is implemented to use the NIC as the source device for interrupts by
sending broadcast UDP packets. Table 3.5 shows the empirically determined properties of
the distributions of tg, D and d for two NIC chips and 1400 bytes of payload. The amount
of payload for the experiments was chosen relatively close to the maximum transmittable
with a single Ethernet frame. A larger choice would finally have led to multiple packets
being sent and multiple interrupts being generated and would thereby violate the model.24

Smaller choices intuitively tend to reduce the interrupt delay (less has to be sent) and would
thereby only restrict the sender to perform the interrupt generation closer to the end of the
timeslices.

The generation time tg was measured in userspace by taking the time immediately before
and after the call to the interrupt-initiating function. The first of these times was also used
for the collection of the delay D, whose end time however was measured in the kernel at
the beginning of the interrupt handler. Finally, the interrupt duration d was completely
measured in the kernel at both ends of the interrupt handler. In general, kernel-measured
interruption durations tend to be lower bounds, since they do not embrace the switch from
user to kernel mode as well as assembly code to enter and leave the interrupt handler. On
the other hand, userspace-measured durations of interruptions are upper bounds, because a
task cannot take the time exactly at the point in time when an interruption occurs or when
an interrupt handler finishes.

That it is not necessary to detect and measure interrupts from within the kernel is shown

24Compare Section 3.4.3 for a discussion of this idea.

48 3. Analysis

for the timer interrupts in Table 3.6. The approximate durations of timer interrupts were
first manually identified in a histogram of interruption durations (which was easily collected
by a slightly modified receiver application). Then a specialized program, also akin to the
exploit’s receiver, was used to conduct more precise measurings of only the timer interrupts.
For the duration of task switches, two processes were started to collect “interruptions” of
the length of a timeslice, caused by the respective other process. The outcomes of both
processes were then combined to obtain the wanted values (as the difference between the
beginning of an interruption of one process and the succeeding ending of an interruption of
the other process).

The clock frequency was set in the kernel configuration to f = 100Hz, giving T = 10ms.
It will later be discovered that this value is slightly larger than the actual timer frequency,
but for now the approximate value suffices.

Finally there is the evaluation time te, which corresponds to the runtime of a very small
amount of code to evaluate the outcome of the measuring phase. This particularly includes
the code for the comparison of the measured duration against the lower and upper bound
of the measuring range. However, also function calls or other conditional and unconditional
jumps may add up to the runtime. In order to at least get an approximation of te, the core
of the evaluation code was copied to a dedicated measuring program and complemented
with runtime measuring code. Although the result of te = 27ns was measured with only
a very small standard deviation, it is unclear what impact the extraction of the evaluation
code into a separate program and the addition of time measuring code have on the runtime
to be determined. The above value of te should therefore only be seen as a rough guide for
the dimension of the evaluation duration.

Interrupt Losses

Due to the mostly small deviations from the mean, all interrupt properties are simplified
to constants assuming the respective mean value: tg = 165.05µs, d = 15.19µs and D =
1326.02µs for the NIC interrupts;25 c0 = 7.709µs and ci = 6.602µs for i > 0 as timer
interrupts are concerned. This spares the reader the introduction of, e.g., support intervals
and especially simplifies Equation (3.3) of page 42 to λ = l(D), where l(D) is determined
in the following. At the end, when concrete suggestions for the exploit parameter values
have been found, it has to be taken into account that slight corrections may be necessary
to respect also the deviations of system parameters from their mean values.

The primary goal here is not to determine λ, but to minimize it by adjusting exploit
parameters tm and ε. The interrupt delay distribution has only a single, narrow peak, which
can be moved relative to the timer interrupts with the parameter ε. If possible, then it
should be set to a value that makes the interrupt not fall into the collision ranges (i), (ii)
or (iii), since these either disallow the detection at all or at least complicate it. Range (i)
would require D < ε−d, so ε ≤ D+d suffices to exclude the possibility of a sender-initiated
interrupt occurring within this range. Similarly, range (ii) can be eliminated by reducing ε’s
upper bound further to D − c0. Range (iii), i.e. a collision with a timer interrupt after the
task switch, is excluded already for the first one due to the short interrupt delay D (since
ε ≤ D + d − T = −8658.79µs cannot be satisfied).

The short interrupt delay D effectuates all sender-initiated interrupts occurring before τ1,

25Formally one might want to define D(t) = δ(t − D) where δ is the Dirac delta function.

3.3. Adjusting Exploit Parameters 49

independent of how ε is chosen. Therefore, all later subranges of (iv) and (v) can henceforth
be excluded from the considerations. However, their remaining, earlier subranges (before τ1)
still depend on tm, which therefore is considered next.

The measuring duration tm influences the probability of compound measurings as well
as the likelihood of interrupt losses due to the receiver evaluating instead of measuring.
If it is assumed that (a) the interrupt can occur only during the ranges (iv) and (v), i.e.
ε ≤ D − c0, and (b) occurrences of sender-initiated interrupts are uniformly distributed on
the measuring/evaluation phases, then the probability λ̄ := 1−l(D) of successfully detecting
an occurring interrupt can be computed as follows:

λ̄(tm, ε) =

tm
tm + te

if tm ≤ D − c0 − ε,

D − c0 − ε

tm + te
if D − c0 − ε < tm ≤ T + ε − D − d,

T − c0 − d − tm
tm + te

if T + ε − D − d < tm ≤ T − c0 − d,

0 otherwise (tm > T − c0 − d).

(3.6)

This case distinction only holds if D − c0 − ε < T + ε − D − d, which expresses that the
interrupt occurs in the first half of the interval between the two timers (the inverse case
would be analogous). The first case corresponds to collision range (v), where compound
measurings are impossible and λ̄ therefore equals the probability of the receiver executing
the measuring code. All remaining cases belong to collision range (iv): In the second case,
tm is small enough to only allow for compound measurings with the previous task switch;
case 3 handles those cases where compound measurings are additionally possible together
with the following timer interrupt; and in the last case, tm is large enough to always produce
compound measurings.

One can easily satisfy oneself that λ̄ is continuous with respect to tm. For every fixed
ε within its permitted interval, the maximum of λ̄ with respect to tm is located at tm =
D − c0 − ε, since each case’s corresponding function is monotonic but only the first one is
not monotonically decreasing. Another way of writing the maximum is tm + ε = D − c0,
which shows that the sum of both adjustable parameters (tm and ε) is constant. To further
maximize λ̄ over all allowed values of ε, the strict increasing monotonicity of tm/(tm + te)
with respect to tm suggests to maximize tm or, equivalently, minimize ε.

Concluding, to minimize the interrupt loss probability, ε should be chosen minimal with
ε ≈ tg in order to make the interrupt occur as close to the middle of the inter-timer interval
as possible, and for tm the maximal time should be chosen that does not yet cause compound
measurings. Hence ε ≈ 165µs and tm ≈ 1153µs would be the recommendation obtained
with the framework. Table 3.2 on page 34 shows some interesting experimental results
obtained with different values of tm. The temporal pre-position for all experiments was
chosen as ε = tg + 40µs to be a bit more robust against the variations in the interrupt
distributions and inaccuracies of the timing. The increase of ε leads to a decrease of tm
by the same amount, as the sum of both has to be constant for the maximum of λ̄. Thus,
Setting 5 of the table would (approximately) correspond to the framework’s suggestion.
Nevertheless the table shows that this tm does not yield the best results (though also not
the worst) and should rather be chosen smaller, like in Setting 3 or 4. In the following,
one possible cause for the suboptimal predictions will be factored into the computation:

50 3. Analysis

Additional interruptions. Before, however, it is demonstrated that the framework is, for
instance, able to explain the results of Settings 1 and 6 of the experiments.

In Setting 1, the measuring duration tm ≈ 0.183µs was chosen, which clearly belongs to
the first case of Equation (3.6). Given te as above, one easily obtains 1− λ̄ = te/(te + tm) ≈
12.9% – close to the experimentally determined 14.1% and 14.3%. Similarly, for Setting 6
with tm ≈ 1275µs one obtains, when applying the second case of Equation (3.6), that
1 − λ̄ ≈ 12.7% – right in the middle of the experimental results.

Additional interrupts. In Equation (3.6), λ̄ considers only simple losses of the sender-
initiated interrupts and compound measurings with timers or task switches. However one
might also think of additional other, randomly occurring interruptions that are responsible
for compound measurings: Another process may wake up for a short time26 or a key press by
a user could trigger an interrupt. Firstly, to stay within the model, it is assumed that all the
additional interruptions cannot be confused with the sender-initiated interrupts, for instance
because their durations differ.27 This preserves p(Y >0|X=0) = 0 as in Equation (3.2) on
page 32. Secondly, the simplifying assumption is made that the occurrences of the additional
interruptions are seldom with respect to T (in the sense that more than one occurrence
within a time interval of length T is unlikely) and can be modeled by a Poisson distribution
(compare e.g. [Hoe66, 5.2.4]). The choice of this distribution is neither based on empirical
results, nor on theoretical considerations about the exact nature of these events, but on the
assumed rarity of the additional interruptions and also the distribution’s simplicity.

So let ϕ be the average number of Poisson-distributed other interruptions per time unit
(e.g., ϕ = 1/ s). The probability of no such interruption during a measuring phase is then
e−tmϕ, so that the total detection probability becomes

λ̃(tm) =
tm

tm + te
· e−tmϕ.

Theorem 3.4. Given c, ϕ > 0, the function g(t) = t
t+c

e−tϕ assumes its only maximum
on R+ at

t∗ = −c/2 +
√

(c/2)2 + c/ϕ

and is strictly monotonic increasing on [0, t∗).

The maximum given by Theorem 3.4 can of course only be assumed if there exists a valid
ε such that tm = D − c0 − ε as before. The monotonicity of λ̃ therefore suggests to choose

tm = min
(

D − c0 − tg,−te/2 +
√

(te/2)2 + te/ϕ
)

,

i.e. either result of the theorem or, if this value is too large, the maximal value that still
has a corresponding valid ε.

Table 3.7 shows the suggested measuring duration tm and the resulting detection proba-
bility λ̃ for some chosen values of ϕ, from no additional interruptions at all to an average
of 50 per second. The larger the value of ϕ, the more inaccurate λ̃ is expected to be, since
then also other tasks are likely to be active and disturb the transmission. The suggested tm

26This situation only applies if not all processes are subject to the fixed timeslice lengths.
27In the testing environment, for example interrupts resulting from mouse moves turned out to have dura-

tions in the interval [10.4µs, 11.7µs].

3.3. Adjusting Exploit Parameters 51

ϕ tm λ̃(tm) σ γ
0 /s 1153.00µs 0.002% 1945.82µs 1211.15µs
1 /s 164.30µs 0.033% 1451.47µs 222.45µs

10 /s 51.95µs 0.104% 1395.29µs 110.10µs
50 /s 23.22µs 0.232% 1380.93µs 81.37µs

Table 3.7. Suggested measuring durations tm and their influence on the loss rate, the
suggested skew and the suggested size of the gap.

for ϕ = 1 /s is close to the tm of Setting 3 in Table 3.2, page 34, which led to the low loss
rates. One might thus argue that in this environment, disturbances leading to an interrupt
loss in the receiver occur at most once per second.

For the sake of completeness it has to be remarked that the values computed for λ̃ are
lower than the experimentally determined values of λ since the former does not capture
interrupts that are either not generated by the sender at all, or occur while the receiver is
executing.

Interrupt Misaccountings

From the four new parameters introduced for the adjustment of the bit interval skew and the
gaps between bit intervals, M is considered first. A practical evaluation of M is expected to
be error-prone, as additional time measurements and their recordings in user- and kernel-
space almost necessarily tamper with the results. Therefore the pessimistic assumption is
made that M is distributed uniformly on [0, tm), so that the uncertainty about the outcomes
is maximal (compare [CT06, Example 12.2.4]). However, for the following computations it
is only of interest that the support interval of M is the full [0, tm).

Now that M has been fixed, it is possible to advance to the distribution of the random
variable Z introduced in the generic framework. But instead of computing or only approx-
imating the convolution, the distribution is only reduced to its support interval [Z−, Z+],
which is assumed to be contiguous (otherwise also a contiguous extension of the support is
sufficient). Formally it is required that p(Z− ≤ Z ≤ Z+) = 1 and p(z− ≤ Z ≤ z+) < 1 for
all intervals [z−, z+] ([Z−, Z+]. For convenience, the width of the interval is referred to as
∆Z := Z+ − Z−.

Regarding distribution B, two options will be exercised. In the first, the concrete shape
of the distribution is ignored and it is only assumed that distances to bit interval boundaries
may become arbitrarily small (i.e.

∫ t

0
B(δ) dδ > 0 and

∫ tb
tb−t

B(δ) δ > 0 for all t > 0). Then

it follows from Equation (3.4) on page 46 that, in order to prevent from misaccountings,
p(σ − γ/2 ≤ Z ≤ σ + γ/2) = 1 has to hold. This in turn is equivalent to the conditions
σ − γ/2 ≤ Z− and Z+ ≤ σ + γ/2. An immediate consequence of these inequalities is
γ ≥ Z+−Z− = ∆Z, i.e. the gap must be at least as large as the variation of the delay until
the detection of the interrupt, as intuition suggests. The choice of the smallest gap γ = ∆Z
finally leads to a skew amount of σ = (Z+ + Z−)/2. For some possible choices of tm, the
suggestions for σ and γ can be obtained from Table 3.7.

A gap implemented into the receiver has the disadvantage that some interrupts may have
to be ignored. This is similar to a higher loss rate, even if it cannot generally affect all
interrupts of a bit interval at the same time (unless N = 1). Thus, one usually wants to
avoid gaps in the receiver, for example by ensuring that the sender’s clock queries keep a

52 3. Analysis

Kernel Userspace
Measurings: 5 5
Samples/measuring: ≈ 18500 25000
Duration/measuring: ≈ 1 h ≈ 10min
Average timer interval: 9999669.43218 ns 9999669.43188 ns

±0.0035 ns ±0.00024 ns
Standard deviation: 14 ns to 27 ns 293.4 ns ± 0.8 ns

Table 3.8. Results of timer interval length measurements.

certain minimum distance from the bit interval boundaries. The following therefore assumes
γ = 0 and finds out, which distance distribution B is necessary to make this possible.

With γ = 0, from Equation (3.4) on page 46 one obtains that p(−(tb − δ) + σ ≤ Z ≤
δ+σ) = 1 has to hold for all δ ∈ [0, tb) satisfying B(δ) > 0. Similar to the above calculations,
this is equivalent to tb−δ+σ ≤ Z− and Z+ ≤ δ+σ, for the same set of δ. Let [b+, tb−b−] be

an interval fulfilling
∫ tb−b−

b+
B(δ) dδ = 1, i.e. the support of B is a subset of [b+, tb−b−]. Then

a sufficient condition for no misaccountings is the conjunction of the above inequalities for all
δ ∈ [b+, tb − b−]. Few transformations of this conjunction leads to Z+ − b+ ≤ σ ≤ Z− + b−,
which only has a solution for σ if ∆Z ≤ b+ + b−. Informally this simply states that
the minimum distance to the “left” (b−) an the “right” (b+) of the sender’s clock query
must together be larger than the gap, that the receiver would otherwise have to implement
(compare γ above). For the following it is assumed that b+ + b− = ∆Z.

Until now it looks like the occurrences of bit interval boundaries have to be limited to an
interval of duration tb − b−− b+ = tb −∆Z. Earlier explanations however showed that other
tasks waking up may introduce timeslice shifts of arbitrary integral multiples of the timer
interval length T . Therefore, the bit interval boundaries only have a tolerance of T − ∆Z,
which corresponds to the maximum accumulated drift between timeslices (in the form of
N · (ts + tr)) and bit intervals (tb) during a transmission. Assuming a transmission duration
of one hour and T = 10ms, then the deviation of tb from N · (ts + tr) must be below 3 ppm
(parts per million) to stay within the tolerance!28

Determining ts + tr from within the exploit processes is not trivial, especially if the value
has to be highly accurate. Surprisingly it turned out, that even the knowledge of the putative
values of ts and tr as they are setup in the kernel does not necessarily suffice. In the concrete
example, both ts and tr were set to 100ms, which the kernel treats as 10 timer interrupts at
100Hz. However the actual timer interval length was not 10ms, as the 100Hz would suggest,
but about 33 ppm shorter (compare Table 3.8).29 Consequently, the timeslice lengths are
shorter than expected as well.

Besides the actual results, Table 3.8 also reveals that measuring the timer interval length
in userspace is possible. By using linear regression on the collected times of timer interrupts,
even a much higher accuracy was possible than the used time function, gettimeofday(), sup-
ports on its own (it returns seconds and microseconds). The collection of timer interrupts
was done similarly to the detection of sender-initiated interrupts in the receiver of the ex-
ploit.

28This comes from (10ms − ∆Z)/1 hour ≤ 2.78 · 10−6 for ∆Z ≥ 0.
29The cause for this discrepancy are different clock sources, like in this case the local APIC being used for

timer generation but the TSC for the current time.

3.3. Adjusting Exploit Parameters 53

If sender and receiver of the exploit are able to use the same bit interval length, for instance
because the receiver determined it and was able to communicate it to the sender, then a
transmission could last for more than 11 years (!) at a stretch until the potential inaccuracy
of the measured bit interval length could accumulate to more than 8788.5µs (corresponding
to T − γ for the userspace-measured mean T and the largest γ of Table 3.7). On the
other hand, if both exploit processes have to determine the bit interval length on their own,
then their results may differ and, hence, result in a drift between their notions of the bit
interval positions. This drift in turn requires for a gap which prevents from misaccountings
and has to be longer with increasing transmission durations. In the concrete case, if the
transmission takes no longer than 39 days, then the potentially accumulated drift remains
below the smallest gap of Table 3.7, γ = 81.37µs.

Of course the decision whether the exploit processes should precisely measure the timer
interval length ought to consider also that this measurement requires for time that – depend-
ing on the implementation30 – cannot be used for the transmission itself. The transmission
time that is lost due to the timer detection therefore has to be traded off against the lost
transmission time (and higher losses) resulting from gaps.

For the experiments of Table 3.2 on page 34, no gap was used (γ = 0) and the skew has
been set to σ = 1.5ms. The timeslice lengths on whose basis the bit interval length has
been set, were ts = tr = 99.99669431ms. This precision for the timeslice lengths was the
reason why the skew has not been changed along with the measuring duration, contrary to
the suggestion of Table 3.7 on page 51.

3.3.3. Applicability & Limitations

Applicability. Concluding, the application of the generic framework to the given concrete
instance demonstrates the usability and the flexibility of the framework. At the same time it
gives an advice regarding what steps have to be taken in order to get to the desired results,
a suggested exploit configuration. It is expected that most of these steps can be copied for
other target systems if the exploit still uses NIC interrupts or other interrupts with a narrow
delay distribution. Only the characteristic values for the NIC and timer interrupts would
have to be changed.

Due to its generality and its abstraction from the actual implementation, the framework
should also be applicable to other implementations that exploit IRCCs, though potentially
with a different set of exploit parameters.

Although the framework was originally constructed only for dealing with IRCCs, it may
well be possible to confer it to similar kinds of covert channels, like e.g. quantum-time
channels. For their implementation, configuration and analysis it might, as for IRCCs, be
of interest how often a receiver process does not detect the execution of the sender, or how
often the receiver cannot definitely assign a detected execution of the sender to a certain bit
interval.

Limitations. The performed experiments show that the framework did not yield an optimal
set of parameter values for the exploit in the concrete instance. This does not necessarily
have to be a problem of the framework but could as well be the result of an inaccurate

30It may be possible to detect and compute the timer interval during the transmission, both in the sender
and in the receiver.

54 3. Analysis

instantiation that, e.g., did not model the duration of clock queries or ignored the duration
of the “other interrupts.”

The framework also cannot explain why different experiments with the same exploit pa-
rameters and an unchanged testing environment may lead to different loss rates (compare
especially Setting 6 of Table 3.2 on page 34).

3.4. False Positives

So far, the channel model and, particularly, its transition matrix P assumes that sender-
initiated interrupts belonging to a bit are either detected by the receiver or may also get lost
for reasons that have been explained earlier. However it does not comprise the possibility
that the receiver could in principle also regard arbitrary other interruptions as coming
from the sender. Examples for such interruptions range from interrupts coming from the
same hardware device but triggered by another process than the sender, over resembling
interrupts coming from different hardware devices, to interruptions even by other tasks.
Ignoring the possibility of such false positives in the receiver has basically two consequences:
(a) The computed theoretical capacities and bandwidths may be higher than what is actually
possible on a real system. For an attacker this could be disadvantageous since transmissions
turn out to be slower than expected. (b) The chosen channel encoding might not work at
all. For example, the threshold encoding with threshold τ = 1 would, independently of the
sender’s input, return a sequence of 1’s if there should be at least one false positive within
every bit interval.

Obviously, this deficiency has to be remedied. The first and possibly most intuitive
approach for doing so would be to refine the model by adding false positives to the transition
matrix. For input 0, the outcome would then be distributed based on the frequency of false
positives only, while the output corresponding to input 1 would be the result of a sum
(convolution) of the false positives and the correctly detected interrupts coming from the
sender. Given the resulting transition matrix, the computation of the channel’s capacity
and bandwidth is possible and a suitable channel encoding can be chosen. The problem
with this approach is that the distribution of false positives may be complex and varying
over time, and may not be known even approximately to a remote attacker. Examples that
cause such complex distributions could be Ethernet traffic (compare e.g. [LTWW94]) or
direct human interaction with devices like a keyboard or a mouse. Of course this argument
also applies to the binomial distribution and its parameter λ of the previous model, but is
less crucial there since only the value p(Y =0|X=1) – the probability of false negatives – of
this distribution is relevant for the analysis.

Instead of refining the model and choosing example distributions for false positives, an-
other approach is taken: Ensuring that false positives either do not occur at all or at least
seldomly enough to be negligible. Therefore, the receiver must, potentially in cooperation
with the sender, be able to distinguish interrupts caused by the sender from other, initially
resembling interruptions and ignore the latter. The aim of this section is to introduce tech-
niques that can be implemented into the exploit and then allow the receiver to discriminate
interrupts also based on other attributes than only their duration.

In the following, at first the potential noise is subject to a closer look. Afterwards two
techniques are described that may be used for filtering noise, possibly also in combination.
In both cases it is also possible to use the underlying ideas for increasing the upper bounds of

3.4. False Positives 55

the implemented channel’s bandwidth. A short discussion of these alternatives is therefore
presented at the end of each technique.

3.4.1. Classification of Noise

In the given implementation, the receiver tries to detect interrupts by measuring the elonga-
tion of the runtime of a certain piece of code. Thus, everything happening in a computer that
is able to elongate the execution time of a simple loop with a floating-point computation,
may in principle be confused with sender-initiated interrupts. Besides hardware interrupts,
this very broad definition also permits rather exotic influences as, for instance, hardware
that wants to access the memory bus at the same time as the receiver or disadvantageous
branch predictions in the CPU. It is expected, though not experimentally verified, that these
latter effects cause only elongations that are by far shorter than those of hardware inter-
rupts. The following will therefore ignore the potential exotic influences and concentrate
only on hardware interrupts.

From the receiver’s perspective, a hardware interrupt lasts from the time of the actual
interrupt signal (by the hardware to the CPU), which stops the execution of the receiver,
until the time that the receiver task is resumed. In the meantime at first the interrupt is
handled, for example by driver code. However this kernel code might decide that, after
the actual interrupt handler has finished, not the originally interrupted task should be
resumed but instead another task should be scheduled (compare e.g. [BC05, p. 273] for
timer interrupts or [CRKH05, p. 270] for device drivers). The consequence of rescheduling
before returning to the interrupted task is a longer and potentially more varying interruption
duration.

Another important aspect of hardware interrupts is how they are caused, which can be
grouped into three categories: (a) Externally caused interrupts, like those triggered by a
keyboard or a mouse, or the NIC for an incoming packet; (b) internally caused interrupts,
for example indicating the completion of a HD read or write, or the sending of a network
packet; and (c) automatically caused interrupts like timers. Timers do not need any further
explanation. They occur at a high but constant frequency and may effect a rescheduling.
Externally caused interrupts in contrast can occur at any time and with an almost arbitrary
frequency, while internally caused ones occur within a certain period of time after their
generation.

Regarding internally caused interrupts, there are basically two options for their origin:
Blocking or non-blocking system calls. The former effectuate an immediate yield of the
CPU such that the interrupt is likely to occur while another task is executing (and then
might cause a rescheduling back to the originator of the interrupt). Furthermore, due to the
immediate yield, the time-frame during which such an interrupt would occur in the IRCC
receiver, if it was scheduled after the yield, would be determined by the delay distribution
of the respective interrupt. For interrupts generated with a non-blocking system call, this
property is not given unless the respective task immediately afterwards voluntarily yields
the CPU (like the sender of the exploit does). It may happen that in the non-blocking case
the resulting interrupt always or almost always interrupts the generating task itself (if it
does not yield or block until then) or imply a relatively long time-frame during which the
succeeding task (the receiver) is interrupted.

56 3. Analysis

3.4.2. Incorporating Interruption Times

In its initial form, the implemented exploit considers an interruption to be relevant only
based on its duration. If it falls into a certain range, then the interruption is considered to
be caused by the sender, otherwise it is ignored. Furthermore, the receiver also measured for
interruptions during a full timeslice, here 100ms, even though it was known that the sender-
initiated interrupts in the testing environment should occur only during a relatively small
fraction of every timeslice (compare e.g. the variation of the delay in Table 3.5, page 47).

To make use of more information about the times of interrupt occurrences, the receiver
thus needs a notion of timeslices. Once it knows when the respective current timeslice has
begun, it can easily determine at which offset in the timeslice an interrupt occurs. For the
implementation of the sender, the system function sched yield () has been successfully used
to add the notion of timeslice, so it is apparent to proceed similarly also for the receiver.
However, in case of the receiver two problems have to be solved first:

(a) The receiver somehow has to find out the right time for yielding the CPU, if possible
without permanently querying the CPU and thereby increasing the evaluation dura-
tion te. For setting up the bit interval length suitably (avoiding drifts that finally
require for gaps), it would additionally be helping if the CPU is yielded always at the
same offset in the timeslice so that tr remains constant as before (this latter problem
vanishes if the operating system enforces fixed timeslice lengths not only for the sender
but also for the receiver).

(b) Through yielding the CPU before the end of its timeslice the receiver should not
negatively influence the sender. However if it yields the CPU, say, in the middle of
two timer interrupts, then an immediately following sender timeslice will not have the
full expected length ts but rather approximately half a timer interval less.

For solving the second problem it was decided to yield the CPU shortly after a timer
interrupt, so that if the sender is scheduled afterwards then its timeslice length is reduced
by only a minimal amount of time. The number of the timer interrupt, after which the
CPU is yielded, should of course be chosen such that afterwards no further sender-initiated
interrupts are expected. Regarding the implementation to solve the first of the above prob-
lems, it was chosen to use (software) timers via the setitimer () system function. Since the
operating system delivers the SIGALRM signal only after timer interrupts, the receiver does
not even have to know an exact time for when the timer should expire. Alternatively, the
receiver could also try to detect the timer interrupts itself, just like it also detects the sender-
initiated interrupts, but this is expected to complicate the implementation much more than
the setitimer () solution did.

In the testing environment the receiver can already yield the CPU after the first timer
interrupt of its timeslice, resulting in a shortened receiver “timeslice” length tr = 10ms
(a single timer interval). This does not only increase the channel bandwidth, but also
reduces the reception time during which the receiver would otherwise only have been able to
collect false positives. Figure 3.6 illustrates the huge impact of this modified implementation
in the rather noisy extended testing environment. For the figure, all interruptions with a
duration of up to 75µs were collected with a receiver process and compiled into a histogram
with a bin width of approximately 71 ns. The peaks at about 15µs in both red histograms

3.4. False Positives 57

Interruption duration (µs)

N
u
m

b
er

(l
og

2
)

757065605550454035302520151050

15

12

9

6

3

0

(a) Receiving for 655 s with full receiver timeslices (tr = 100ms).

Interruption duration (µs)

N
u
m

b
er

(l
og

2
)

757065605550454035302520151050

15

12

9

6

3

0

(b) Receiving for 3600 s with shortened receiver timeslices (tr = 10ms).

Figure 3.6. Histograms of interruption durations in the extended testing environment,
with (red) and without (black) sender-generated interrupts.

show the interruptions of sender-initiated NIC interrupts (compare the duration in Table 3.5,
page 47).31

It is assumed that most of the noise shown in the two histograms of Figure 3.6a is the result
of the kernel scheduling other tasks after a timer interrupt. Externally caused interrupt can
be excluded, since keyboard and mouse were not touched throughout all experiments and
no other hosts could have triggered NIC interrupts as none were connected to the testing
environment’s network. The only suspect for internally caused interrupts would probably be
the hard disk, but since no programs were deliberately started and no data was deliberately
read from or written to a disk, their number should be fairly small compared to the amount
of noise in the histogram.

Although these results are already impressive, the receiver still left a time-frame of roughly
10ms for the sender-initiated interrupts and, thus, also for noise. The variation of the NIC
interrupt delay, however, is much shorter (compare again Table 3.5 on page 47) and should
allow for an even stricter filtering.

To verify this hypothesis, the receiver was enhanced to determine the current time at the
beginning of every timeslice and again shortly after a sender-initiated interrupt has been

31The “NIC-peak” in Figure 3.6b is higher than in 3.6a since for both figures not the number of generated
interrupts but the reception time was kept constant to keep the amount of noise comparable.

58 3. Analysis

detected. The differences between both times have been collected during a transmission of
the sequence (10)8000 and compiled into Table 3.9. For the measuring, a short tm ≈ 0.91µs
was chosen to increase the accuracy of the detection times.32 In order to accept all sender-
initiated interrupts it would thus have sufficed to leave a time-frame of about 33µs, which
is even shorter than the delay variation computed in Table 3.5 (54µs). The low standard
deviation of the values from the mean indicates that this time-frame could even further
be reduced with risking only few false negatives. In addition, the time-frame may also be
moved in time by changing the value of ε in the sender.

The approach of allowing only short time-frames for the sender- Samples: 7027
Mean: 1180.1µs
Std.dev.: 0.9167µs
Min: 1158.4µs
Max: 1191.5µs

Table 3.9

generated interrupts has the potential of filtering out timer inter-
rupts and internally caused interrupts completely, and of reducing
externally caused interrupts. The latter kind can in principle oc-
cur at any time, so the probability of such interrupts occurring in a
short time-frame is reduced but may still be nonzero. Timer inter-
rupts and internally caused interrupts can be excluded as a cause
for false positives if the time-frame for sender-initiated interrupts
can be moved to an offset in the receiver’s timeslice where it is distinct from the foreign
interrupts’ time-frames. However, the longer the time-frames of sender-initiated and/or
foreign interrupts are, the larger is also the remaining probability for false positives.

The reason why this modified receiver implementation has not been used for the whole
thesis is that its interrupt loss rate was significantly higher (10% and more) than it was with
the unmodified version. The cause for this deficiency however could not be identified.

Alternatives. Instead of using the time of an interruption as a property for filtering noise,
it could also be used for an extension of the input alphabet. Regarding the implementation
of the sender, the constant temporal pre-position ε could be replaced by a variable whose
value depends on the respective bit of data to be sent. Analogously the receiver could
assign a certain value to an interruption depending on when within the receiver’s timeslice
it has occurred. Based on a variation of 33µs for the detection time of an interrupt, and
a possible interval for ε of [tg, D + d] ≈ [165µs, 1341µs] (see Section 3.3.2), this would
allow for 35 = ⌊(1341 − 165)/33⌋ distinct values for ε. Including the possibility of not
generating an interrupt, the input alphabet could thereby extended to 36 elements that
might be distinguished by a receiver. Without any disturbances the capacity would then
increase from 1 to log(36) ≈ 5.2 bits per “bit” interval.

3.4.3. Generating Multiple Interrupts

Depending on the interrupt source chosen for the channel it may be possible to generate
multiple interrupts with a single call to a system function. In case of the NIC it was
discovered that sending a payload that, together with all packet/frame headers, would exceed
the maximum transmission unit (MTU) leads to multiple packets being sent consecutively
and one interrupt being raised for each sent packet. The typical MTU value for Ethernet
is 1500B. Table 3.10 shows the characteristics of the four interrupts resulting from sending
5800B. The standard deviations of the interrupts’ delays and durations are small compared
to the respective means, which qualifies both attributes for being used as filtering criteria.

32Due to the modified receiver, the measuring phases now have rather fixed offsets within the timeslice, so

3.4. False Positives 59

Samples Mean Std.dev. Min Max
Generation 20000 338.65µs 7.718µs 336.68µs 1088.30µs
#1 Delay 6384 1394.99µs 4.604µs 1393.68µs 1752.59µs

Duration 6384 182.03µs 0.246µs 181.50µs 185.45µs
#2 Delay 5472 2638.96µs 4.987µs 2637.50µs 2997.24µs

Duration 5472 170.52µs 0.282µs 170.13µs 171.48µs
#3 Delay 5472 3882.77µs 4.998µs 3881.31µs 4241.82µs

Duration 5472 24.29µs 0.228µs 23.90µs 24.99µs
#4 Delay 5472 5036.99µs 4.999µs 5034.71µs 5396.05µs

Duration 5472 14.84µs 0.227µs 14.57µs 15.46µs

Table 3.10. Generating 4 interrupts by sending 5800B of payload (values for the
RTL8029 NIC controller).

In principle, multiple interrupts may also be generated by explicitly calling the generating
system function multiple times. This approach would allow for a more fine-grained control,
for example in terms of the possibility of choosing different interrupt sources or influencing
the temporal distance between the occurring interrupts. In the latter case it however has to
be considered that the distance between the interrupt-generating calls may have no influence
on the distance between the actual interrupts: Requests to the respective device might
be buffered by the kernel until the completion of the first request, indicated by the first
interrupt. A potential disadvantage of the approach with regard to filtering noise is a higher
variation in at least the generation duration, but potentially also the interrupt delay.

The receiver could use multiple interrupts to reduce the probability of false positives in
various ways:

– If the individual interrupts differ in their duration, as it is the case in Table 3.10, then
the receiver may choose to consider only those of the interrupts whose duration ranges
are not subject to noise.

– If the receiver has a notion of timeslices, as suggested in the previous section, then it
may choose to count only those of the interrupts whose range of temporal offsets in
the receiver’s timeslice does not comprise noise.

– The receiver may try to detect all of the generated interrupts and increase the output
counter for the respective bit only if at least some minimum number of them is found
in a timeslice.

– In addition to the previous bullet, the receiver may require that the temporal distances
between the putative sender-generated interrupts are correct.

Generating multiple interrupts instead of just a single one adds redundant information,
which the receiver in principle can use to filter any kinds of foreign interrupts (timers,
internally and externally caused, with and without subsequent rescheduling). Certainly,
false positives are still possible, but the probability of multiple interrupts occurring during
a single receiver timeslice, all with the right offset and duration, should be small enough to
be negligible.

that a larger tm could result in a detection always within the same evaluation phase.

60 3. Analysis

Though multiple interrupts are, in case of the NIC, simple to generate, they have not
been used for producing the main results of this thesis, as the resulting channel encoding
would have differed from the one of the original exploit implementation (see the beginning
of Chapter 2).

Alternatives. Similar to the encodings presented in [MS07] and [MS08], multiple interrupts
can be used to extend the input alphabet. If k is the maximum number of interrupts that
can be induced with a single generating function call, then one might define I := {0, . . . , k}
and then for every input x ∈ I generate exactly x interrupts. In the absence of any noise or
losses and under the assumption that all k different interrupts can be distinguished by the
receiver (based on their durations and/or times), this would increase the capacity from 1 to
log(k + 1) (corresponding to the entropy of the input).

Even if the input alphabet is not enlarged, multiple interrupts could also be used for
reducing the loss rate λ since, for instance, four interrupts are less likely to be all undetected
than just a single one. To transmit a 1, the sender might then always generate k interrupts.

4. Conclusion

4.1. Novel Countermeasures

In [MS07] the authors already propose and evaluate a set of countermeasures against IRCCs,
which were already implemented in some operating systems but for other reasons than
mitigating IRCCs. During the work on this thesis, especially on the implementation of the
exploit and the scheduler patch, two additional countermeasures were found. Both can in all
likelihood be implemented into a scheduler like Linux’s O(1) or FreeBSD’s ULE scheduler
without much effort and at the same time do not have a huge impact on the system’s overall
performance.

Inter-timeslice gaps. Interrupt-related covert channels, as they are covered by this thesis,
are only possible if one process – the sender – is able to generate an interrupt that occurs
while another process – the receiver – is executing. Since it usually does not take a long
time from the generation of an interrupt until its occurrence (little more than a 1ms in
case of the NIC of the testing environment), sender and receiver process have to execute
in relatively quick succession. The operating system could therefore mitigate IRCCs by
ensuring a minimum temporal distance between the execution of two tasks, of which the
first must not transmit information to the second. If a distance is guaranteed that is longer
than the maximum delay of all interrupts available to a sender process on the respective
system, then IRCCs may even be suppressed completely. During the gaps, the CPU does
not necessarily have to idle. Instead, other runnable tasks could be scheduled between a
switch from a sender to a receiver, as long as they do not belong to the class of senders
themselves.

With only little modification, the scheduler patch developed for this thesis is already able
to establish this countermeasure: Instead of storing the remaining time of the sender’s times-
lice into fq wait ticks in fixed quantum update leaving() (Listing 2.7, page 22), an arbitrary
amount may simply be added to ensure a gap.

As mentioned, the length of the gap and, thereby, the impact of this countermeasure on
the system performance depends on the maximum delay of interrupts that a sender process
can generate. One might imagine situations where this maximum delay can become too long
for the gaps to be feasible any more. An example could be a sender process that deliberately
sends requests to a server that responds very late or with a large number of consecutively
arriving packets. The corresponding receiver would in this scenario then try to detect the
NIC’s reception interrupts. Even under these circumstances, the proposed gaps might still
be useful for absorbing interrupts with short delays, but could then only mitigate instead of
eliminate IRCCs.

Randomized timeslice lengths. In Section 2.1.2, the O(1) scheduler is modified to elim-
inate quantum-time channels from sender tasks to receiver tasks by ensuring a notion of

62 4. Conclusion

fixed timeslice lengths for senders. Consequently, the sender of the exploit is implemented
to generate its interrupts shortly before the end of its timeslices, such that the interrupts can
occur while the next task – the receiver – is executing. Fixed timeslice lengths, however, are
not a necessary condition for eliminating quantum-time channels. It is only required that
the sender cannot, for instance by yielding the CPU, influence when the receiver is sched-
uled next time. To achieve this, the scheduler could also implement randomized timeslice
lengths, distributed on some reasonable interval.

Regarding the elimination of quantum-time channels there should be no difference between
fixed and randomized timeslice lengths. However, the IRCC sender process implemented
for this thesis would only be able to make a small fraction of its generated interrupts be
detectable by the receiver. All others would occur while the sender itself is still executing.
An adapted sender that generates an interrupt shortly before all, most or at least multiple
possible ends of its timeslice – e.g. shortly before each timer interrupt –, may be able to
circumvent the countermeasure, but this approach (a) may be possible only to a limited
amount, e.g. in case of interrupt rate limiting, (b) may not be possible at all, e.g. if the
system calls generating the interrupt always block the sender, and finally (c) would make
the sender behave even more suspicious.

In order to implement this countermeasure, the scheduler would only have to refill a
(sender) task’s timeslice with a (pseudo) random number of ticks instead of a constant one.
Few changes to Listing 2.4 on page 19 should suffice to achieve this.

4.2. Surprises

Fragility. During the work in this thesis, a lot of transmissions with the exploit were
performed in order to improve the implementation, get rid of bugs, and discover the effect
of parameter or environment changes. Often it was discovered that even innocent looking
modifications suddenly resulted in significantly higher loss rates or, sometimes, disabled
the channel completely. Though annoying, these incidences deepened the understanding of
IRCCs and are therefore not excluded from the thesis.

– At the very beginning of the work, the Linux kernel configuration had to be set up.
Initially, the USB stack had been enabled, but since no USB devices were attached at
that time and the kernel was decided to be reduced to the minimum, USB was finally
removed. The consequence was that the NIC interrupts suddenly led to shorter inter-
ruptions of the exploit’s receiver – even though, as said, no USB devices were attached
before, and also the NIC did not share its IRQ number with the USB controller.

– In the beginning of the work on the exploit, the measuring duration (tm) – more pre-
cisely the value of iterations – was hardcoded into the receiver. When this value was
then changed it often happened that the putative durations of sender-initiated inter-
rupts also altered. Longer measuring durations thus seemed to cause longer interrupt
durations, though of course the interrupts itself did not change.

This effect vanished once the measuring duration was no longer hardcoded but instead
given as a command line parameter. It is thus presumed that the discovered behavior
was the result of compiler optimizations, but the exact culprit is not known. However,
one might imagine that even an already finished interrupt handler has an influence

4.3. Related Work 63

on the subsequently executed instructions, for instance because the context switches
flushed the CPU’s information (e.g., branch prediction) about how to arrange the
execution of these instructions. Longer measuring durations in this context would
result in more, potentially slower executed instructions after the interruption and,
thereby, longer putative interruption durations.

The consequence of these observations is that an actual attacker may have to know more
about the target system than intuitively necessary and must be careful that small, seemingly
insignificant changes of the exploit code or the compilation conditions do not disable the
transmission completely.

Availability. The exploit presented in this thesis was implemented with NIC interrupts
in mind, even though it does not explicitly exclude the possibility of being used together
with other interrupt sources. The results presented in Table 3.2 on page 34 show that
IRCCs on the basis of NIC interrupts are possible. Furthermore, Table 3.5 on page 47
indicates that NIC interrupts may even be a very good choice due to their very small
variances, especially regarding their delay and duration. Nevertheless this latter table also
shows a tendency: Interrupt delays (especially after subtracting the generation times) are
approximately inversely proportional to the network bandwidth. While the delay with a
100Mbit/s NIC should still be sufficient for establishing an IRCC, a Gigabit Ethernet NIC
could already be sending out packets too fast for letting the completion interrupt occur
during a receiver timeslice. To retain the possibility of a NIC-based IRCC, the sender might
then try to resort to sending multiple packets, as described in Section 3.4.3, or “jumbo
frames” (larger Ethernet frames), if they are available.

4.3. Related Work

The focus of this thesis is on the implementation and analysis of an exploit of interrupt-
related covert channels, which have first been introduced in [MS07] and are a specific class
of covert channels. A different approach of exploiting hardware interrupts for malicious
purposes is presented in [Tro98], where the keyboard input is eavesdropped by detecting the
resulting interrupts. This idea however differs from the work in this thesis, in that is does
not constitute a communication channel with a deliberate sender.

Covert channels in general have been introduced by Lampson in [Lam73]. The research
on this kind of channels can be categorized into (a) identification, (b) modeling and analysis,
in particular of the bandwidth, (c) mitigation or elimination, and (d) implementation. An
overview of the former three aspects can be found in [Gli93] and [McH95].

Identification. In [Gli93], three approaches for identifying covert channels are observed:
(a) Syntactic and semantic information-flow analysis (compare, e.g., [Den76]), which iden-
tifies covert information flow between “storage objects”; (b) the shared resource matrix
method (see [Kem83, Kem02]), which identifies the possibility of a covert channel with a
matrix specifying which primitive (operation) may reference and/or modify which resource
attribute; and (c) noninterference analysis (see, e.g., [GM82, Rus92]), which is based on
a finite-state representation of the system under investigation (more precisely, its trusted

64 4. Conclusion

computing base, TCB) and a formal analysis of the set of possible executions (“runs”) of
the system.

Besides IRCCs as introduced in [MS07], also the quantum-time and interquantum-time
channels of [Hus78] exploit the sharing of the CPU between processes. Other covert channels
have been found, which are based on, e.g., shared disks in [KW91], a shared system bus in
[Hu91], or a shared network in [Gir87].

Modeling and analysis. IRCCs are modeled and analyzed in an information-theoretic
framework in [MS07, MS08]. The information-theoretic approach is formally based on
[Sha48] and has also been applied for the analysis of covert channels, e.g., in [Mil89, Gra93,
MM94].

As an example for a different approach of modeling and analyzing covert channels, the
Markov model of [TG88] shall be mentioned.

Mitigation. A formal analysis of several countermeasures against IRCCs, including, e.g., a
reduced clock resolution, polling and interrupt-rate limiting, is presented in [MS07]. The ap-
proaches that are not specific to interrupts can also be found for other covert channels, like,
e.g., the fuzzy time for the bus-contention channel in [Hu91]. For covert channels exploit-
ing other shared resources, however, also different specific countermeasures are suggested
(compare, e.g., [KW91]).

Implementation. Explicit implementations of exploits for covert channels can hardly be
found. Often, only more or less concrete ideas of actual or potential implementations are
described; sometimes only a hint about the existence of an exploit is given, as, for example,
in [Hu91].

Several implementations exist for different network-based covert channels. In [CBS04], the
authors describe their implementation of a “covert network timing channel” that transmits
data via the reception or, respectively, absence of network packets. Related to this channel
are the “JitterBugs” of [SMB06], which transmit information with varying packet times
and have been implemented in hardware. A channel based on packet ordering/sorting is
described in detail in [Ahs00, AK02], but without referencing the existence of an exploit
implementation.

Approaches that can also found under the term of covert channels, transmit data (covertly)
over overt channels, for instance in unused protocol header fields [Rut04, ML05].

4.4. Summary

This thesis approached interrupt-related covert channels from the perspective of an attacker.
Therefore it showed how an attacker could implement an exploit that is able to perform its
task even on a system enhanced with countermeasures against a similar kind of covert
channel. This exploit was afterwards modeled and analyzed theoretically, to obtain upper
bounds on the exploit’s bandwidth. Practical experiments performed in a given environment
complemented the results with lower bounds. The free parameters of the exploit were
subject to a framework, that allowed for obtaining a configuration tailored to a given target
system. Potential problems resulting from noise were discussed and techniques for avoiding
or reducing them were proposed.

4.5. Outlook 65

To sum up, this thesis demonstrates the threat that IRCCs pose to secrets stored on a
computer system.

Implementation. The scheduler modification of Section 2.1 showed a possible solution for
prohibiting quantum-time channels in the Linux operating system. With the usage of a
simple information flow policy, it degrades the system’s performance only when necessary.

More important than the modified scheduler is the exploit implementation that has been
presented in Chapter 2. It consists of a sender process that, depending on the bit value to
transmit, generates one interrupt or none, and a receiver process that steadily measures for
detecting the occurrence of an interrupt. Both processes are intended to execute concurrently
and alternatingly to establish the channel. The only functionality that the operating system
has to offer to the processes is a function to query an accurate clock and a function to yield
the CPU.

Analysis. In Chapter 3, the implemented exploit was at first modeled as a discrete mem-
oryless channel. It was then computed that the upper bound of the channel bandwidth is
5 bit/s, if default timeslice lengths of 100ms are taken as a basis. Transmission rates of
almost 10 bit/s were determined to be possible without changing the channel model, if only
the receiver does not consume full timeslices.

Practical experiments based on a given testing environment showed not only that trans-
missions through an IRCC are possible, but that transmission rates of up to 4.9 bit/s could
be achieved, if exploit parameters are setup well and optimal encodings were used. Even
simple encodings however turned out to permit very low error rates while the transmission
rate still stays above 1 bit/s.

The influence of exploit parameters on the bandwidth has been dealt with by a generic
framework that identifies interdependencies between the properties of a target system, the
configuration of the exploit, and its performance. This allowed for adjusting exploit param-
eters towards their optimal values, as it was demonstrated by applying the framework to a
concrete instance of a computer system.

The channel model that does not include the possibility of falsely positive interrupt detec-
tions was justified by analyzing noise and presenting techniques for reducing or eliminating
it.

4.5. Outlook

The practical implementation of covert channels and, in particular, interrupt-related covert
channels offers interesting questions to be solved, as this thesis should have shown. This
section lists some aspects that could be subject of further research on the topic of IRCCs.

Autoconfiguration. The list of parameters introduced for the generic framework in Sec-
tion 3.3.1 and the remarks of Section 4.2 already suggest that an attacker might have to
know very much about the target system in order to configure an IRCC exploit properly. In
cases where the attacker has no or only very limited access to this system it would therefore
be desirable to have sender and receiver configure themselves as soon as they are run on
the target. For few of the exploit parameters this is already done (namely only tg in the
sender and base of Listing 2.2 on page 13 in the receiver). It would be very interesting

66 4. Conclusion

to see how the system parameters d and ci can be determined without human interaction,
especially if the system is rather noisy. Considering e.g. Figure 3.6a on page 57, this might
finally lead to the application of pattern recognition algorithms. Once the values for the
aforementioned parameters are known, it is rather simple to automatically determine the
remaining framework parameters like D or f . An implementation of the generic framework,
potentially reduced to some relevant special cases, could then finally compute the actual
exploit parameters.

Inconspicuousness. Sender and receiver of the exploit presented in Chapter 2 are CPU
hogs. The former most of the time repeatedly queries the clock while waiting for the end of
its timeslice, the latter repeatedly executes some portion of code to see whether its runtime
has been elongated. The resulting permanently high CPU utilization and/or a faster rotating
CPU fan, including the induced acoustic noise level, might thus quickly reveal the presence
of the exploit. It would therefore be interesting to see whether and how the implementation
of a less conspicuous IRCC exploit is possible.

Channel improvements. The ideas discussed as alternatives in Sections 3.4.2 and 3.4.3
might be more challenging to implement but potentially result in remarkably higher band-
widths. In particular, it would be interesting to find out why the receiver implementation
using shortened timeslice resulted in a significantly increased interrupt loss rate.

Tickless kernel. Current Linux kernels1 offer a “tickless kernel” whose intention is to
reduce the power consumption by avoiding unnecessary timer interrupts. However, timer
interrupts are an important part of the generic framework and are also expected to be the
culprit for the differences between the histograms of Figure 3.6 on page 57. It would, thus,
be interesting to see whether a tickless kernel results in higher or even lower bandwidths,
and how the framework would have to be adapted.

Countermeasures. The novel countermeasures proposed in Section 4.1 should probably
deserve further attention in terms of a theoretical and practical evaluation. For the first
countermeasure, inter-timeslice gaps, the maximal interrupt delay of contemporary hard-
ware should be determined, to obtain an estimation of the required gap between the tasks’
timeslices. It would also be interesting to see whether and how an operating system could
automatically determine the necessity and duration of a gap based on the system call history.

For the second countermeasure, randomized timeslice lengths, it would be interesting
to evaluate the impact on the exploit implementation presented here and devise improved
exploits if possible.

1At the time of writing, this is version 2.6.27.

A. Proofs

A.1. Lossy Noiseless Transmission

Proof of Theorem 3.1, page 32. Let π := p(X=1). Then p(X=0) = 1−π and applying
the definition of mutual information gives

I(X; Y) =
∑

x,y

p(x, y) · log
p(x, y)

p(x)p(y)
=

∑

x,y

p(y|x)p(x) · log
p(y|x)

p(y)

= (1 − π)
∑

y

p(y|X=0) log
p(y|X=0)

p(y)
+ π

∑

y

p(y|X=1) log
p(y|X=1)

p(y)
.

Since for X=0 there is only the output y = 0 with a positive probability, the first sum
collapses to a single summand, which can even be further simplified due to p(Y =0|X=0) = 1.
This yields

I(X; Y) = −(1 − π) log p(Y =0) + π
∑

y

p(y|X=1) log
p(y|X=1)

p(y)
.

The second sum can now be splitted into the cases y = 0 and 0 < y ≤ N (for y > N ,
p(y|X=1) = 0 anyway). Recall from the theorem that ρ := p(Y =0|X=1). Then

I(X; Y) = −(1 − π) log p(Y =0) + πρ log
ρ

p(Y =0)
+ π

∑

0<y≤N

p(y|X=1) log
p(y|X=1)

p(y)

= −(1 − π + πρ) log p(Y =0) + πρ log ρ + π
∑

0<y≤N

p(y|X=1) log
p(y|X=1)

p(y)
.

From p(y) =
∑

x p(y|x)p(x) (according to the law of total probability) one can easily obtain
p(Y =0) = 1 − π(1 − ρ) and, for y > 0, p(y) = πp(y|X=1). This leads to

I(X; Y) = −(1 − π(1 − ρ)) log(1 − π(1 − ρ)) + πρ log ρ − π log π
∑

0<y≤N

p(y|X=1)

= −(1 − π(1 − ρ)) log(1 − π(1 − ρ)) + πρ log ρ − (1 − ρ)π log π. (A.1)

The capacity Cap(I, O, P) is defined as the maximum of the mutual information I(X; Y)
between input and output, with respect to the input distribution. This input distribution
is represented by the single parameter π = p(X=1) (obviously, the choice of p(X=0) would
also have been valid). The maximum1 can be computed by solving d

dπ
I(X; Y) = 0 for π.

1The extremal value must be a maximum, since I(X ; Y) is concave [CT06, Theorem 2.7.4].

68 A. Proofs

Since π appears in I(X; Y) twice in the form f(π) · log f(π), this expression is first generally
derived, where f ′(π) := d

dπ
f(π):

d

dπ
f(π) log2 f(π) = f ′(π) log2 f(π) + f(π) ·

f ′(π)

f(π) ln(2)

= f ′(π) · (log2 f(π) + log2(e)) = f ′(π) · log2(ef(π)).

Then by utilizing the above result for the derivation one obtains

d

dπ
I(X; Y) = (1 − ρ) log(e(1 − π(1 − ρ))) + ρ log ρ − (1 − ρ) log(eπ)

= ρ log ρ + (1 − ρ) log
1 − π(1 − ρ)

π

= ρ log ρ + (1 − ρ) log (1/π − (1 − ρ))
!
= 0.

Now it shows that ρ 6= 1 or, equivalently, λ 6= 1 must hold for π to remain in the equation.
This is intuitive, since λ = 1 means all interrupts are lost and thereby no information would
be transmitted, i.e. I(X; Y) ≡ 0.

If ρ < 1, then solving for π is easy as it appears only once in the equation:

π =
(

1 − ρ + 2
−

ρ log ρ
1−ρ

)−1

=
(

1 − ρ + ρ−ρ/(1−ρ)
)−1

.

Lemma A.1. Given a channel as in Theorem 3.1, a loss rate of λ = 1 results in Cap = 0.

Proof. If λ = 1, then ρ := p(Y =0|X=1) = 1 (as of Equation (3.2)). Applying this value
to Equation (A.1) immediately leads to I(X; Y) = 0, independent of the input distribution.
By the definition of Cap as the maximum mutual information over all input distributions,
also Cap = 0 follows.

Theorem A.1. Let N ∈ N be a fixed integer and, for λ ∈ [0, 1] and y ∈ {0, . . . , N}, let
f(y, λ) =

(
N
y

)
λN−y(1 − λ)y. Define L(y1, . . . , yn; λ) :=

∏n
i=1 f(yi, λ). For a fixed sequence

y1, . . . , yn ∈ {0, . . . , N} define ȳ := 1
n

∑n
i=1 yi.

Then λ = 1 − ȳ/N maximizes L(y1, . . . , yn; λ) for fixed y1, . . . , yn.

Proof. For the following let the (nonempty) sequence y1, . . . , yn ∈ {0, . . . , N} for n ≥ 1 be
fixed and define the mean of the sequence as ȳ := 1

n

∑n
i=1 yi. Then

L(y1, . . . , yn; λ) =

n∏

i=1

f(yi, λ) =

n∏

i=1

(
N

yi

)

λN−yi(1 − λ)yi

= λn(N−ȳ) · (1 − λ)nȳ ·
n∏

i=1

(
N

yi

)

At first the special cases ȳ = 0 (possible only if all yi = 0) and ȳ = N (possible only if all
yi = N) are considered. In the first case, L simplifies to

L(y1, . . . , yn; λ) = λnN ,

A.2. Thresholds 69

which is obviously maximized by λ = 1, the maximal value allowed for λ. Similarly, the
second special case leads to

L(y1, . . . , yn; λ) = (1 − λ)nN ,

which is maximized by λ = 0, the smallest value allowed for λ. Both results agree with the
theorem, claiming that λ = 1 − ȳ/N maximizes L.

Finally the “normal” case 0 < ȳ < N has to be looked at. Therefore it can firstly be
observed that L(y1, . . . , yn; λ) = 0 if and only if either λ = 0 and ȳ 6= N , or λ = 1 and
ȳ 6= 0. Thus, for ȳ /∈ {0, N} a value of λ = 0 or λ = 1 cannot result in a maximum of L
(all λ ∈ (0, 1) would lead to a L(y1, . . . , yn; λ) > 0). In the following it is therefore assumed
that λ ∈ (0, 1).

A necessary condition for a maximum of L is ∂
∂λ

L(y1, . . . , yn; λ) = 0:

∂

∂λ
L(y1, . . . , yn; λ) = nλn(N−ȳ)(1 − λ)nȳ

(
N − ȳ

λ
−

ȳ

1 − λ

)

·
n∏

i=1

(
N

yi

)

= n

(
N − ȳ

λ
−

ȳ

1 − λ

)

︸ ︷︷ ︸

=:α(ȳ,λ)

·L(y1, . . . , yn; λ)

Here, α(ȳ, λ) = 0 is a necessary and sufficient condition for ∂L
∂λ

= 0, as all other factors are
strictly positive. One can easily convince oneself that α(ȳ, λ) = 0 is equivalent to the claim
of the theorem, λ = 1 − ȳ/N .

A sufficient condition for this solution to be a maximum of L is ∂2

∂λ2 L(y1, . . . , yn; λ) < 0.
Therefore the partial derivation of α is easily computed:

∂

∂λ
α(ȳ, λ) = −

N − ȳ

λ2
−

ȳ

(1 − λ)2
.

This then almost immediately leads to

∂2

∂λ2
L(y1, . . . , yn; λ) = nL(y1, . . . , yn; λ)

(

nα2(ȳ, λ) +
∂

∂λ
α(ȳ, λ)

)

For λ = 1 − ȳ/N it is known from before that α(ȳ, λ) = 0. Furthermore, n > 0 and
L(y1, . . . , yn; λ) > 0 and only ∂

∂λ
α(ȳ, λ) < 0. Thus, for the extremal value λ = 1 − ȳ/N the

second partial derivation of L is indeed negative, confirming the maximum.

A.2. Thresholds

Proof of Theorem 3.2, page 35. Firstly, for each τ ∈ N let Yτ = Tτ (Y) be the random
variable modeling the output of the channel (I, I, Pτ). Since Yτ is thus independent of X,
once Y is given, the data-processing inequality [CT06, Theorem 2.8.1] can be applied. This
gives

I(X; Y) ≥ I(X; Tτ(Y)) = I(X; Yτ)

for all τ ∈ N (and all input distributions p(X)). Consequently also

Cap(I, I, Pτ) = max
p(X)

I(X; Yτ) ≤ max
p(X)

I(X; Y) = Cap(I, O, P)

70 A. Proofs

by the definition of channel capacity. Since this last inequality holds true for all τ ∈ N, it
follows that

Cap(I, O, P) ≥ max
τ∈N

Cap(I, I, Pτ). (A.2)

What now remains to be shown is that Cap(I, O, P) = Cap(I, I, P1). Therefore it will
first be demonstrated that I(X; T1(Y)) = I(X; Y):

I(X; T1(Y)) =
∑

x,y∈I

p(T1(Y)=y|x)p(x) log
p(T1(Y)=y|x)

p(T1(Y)=y)

=
∑

x∈I

p(T1(Y)=0|x)p(x) log
p(T1(Y)=0|x)

p(T1(Y)=0)

+
∑

x∈I

p(T1(Y)=1|x)p(x) log
p(T1(Y)=1|x)

p(T1(Y)=1)
.

For the first sum, input X = 0 leads to p(T1(Y)=0|X=0) = p(Y =0|X=0) = 1 and the
term for input X = 1 is abbreviated using p(T1(Y)=0|X=1) = p(Y =0|X=1) =: ρ. For the
second sum, p(T1(Y)=1|X=0) = p(Y >0|X=0) = 0 (which makes the summand for x = 0

vanish) and p(T1(Y)=1|X=1) = p(Y >0|X=1) = 1 − ρ. It then follows

I(X; T1(Y)) = −(1 − π) log p(Y =0) + πρ log
ρ

p(Y =0)
+ π(1 − ρ) log

1 − ρ

P (Y >0)

= −(1 − π + πρ) log p(Y =0) + πρ log ρ + π(1 − ρ) log
1 − ρ

P (Y >0)
.

From the proof of Theorem 3.1 it is known that p(Y =0) = 1−π(1−ρ) and, hence, p(Y >0) =
π(1 − ρ). This leads to

I(X; T1(Y)) = −(1 − π(1 − ρ)) log(1 − π(1 − ρ)) + πρ log ρ − (1 − ρ)π log π,

which equals I(X; Y) as of Equation (A.1) on page 67. This hence for all π (i.e. for all input
distributions) proves I(X; T1(Y)) = I(X; Y). An immediate result of the identical mutual
information is the identical capacity:

Cap(I, I, P1) = max
p(X)

I(X; T1(Y)) = max
p(X)

I(X; Y) = Cap(I, O, P). (A.3)

Since Cap(I, I, P1) ≤ maxτ∈N Cap(I, I, Pτ) has to hold due to the definition of the maxi-
mum, the previous results can be combined to yield first

Cap(I, I, P1) ≤ max
τ∈N

Cap(I, I, Pτ)
(A.2)

≤ Cap(I, O, P)
(A.3)
= Cap(I, I, P1)

and, since the first and the last term of the inequality are the same, finally also gives the
claimed equality of the theorem.

Proof of Theorem 3.3, page 35. Firstly it will be shown that Cap(I, I, P0) = 0, again
via the mutual information: By definition I(X; T0(Y)) = H(T0(Y)) − H(T0(Y)|X) and,
since entropies are always nonnegative, I(X; T0(Y)) ≤ H(T0(Y)). In this case, as T0(y) = 1
for all y ∈ O, the entropy must be zero and hence so is the mutual information and as well
the capacity.

A.3. Hamming Bit Error Rate 71

Secondly it is shown that p(T1(Y) 6= X) ≤ p(Tτ(Y) 6= X) holds for all τ > 0 (τ = 0 can
be excluded because it has already been shown that Cap(I, I, P0) = 0 and, thus, this τ does
not satisfy the requirements of the theorem).

p(Tτ(Y) 6=X) =
∑

x

p(x)p(Tτ (Y) 6= x|x)

= p(X=0)p(Tτ(Y) 6=0|X=0) + p(X=1)p(Tτ 6=1|X=1)

= (1 − π)p(Y ≥τ |X=0) + πp(Y <τ |X=1)

Since p(Y >0|X=0) = 0 and, hence, especially p(Y ≥τ |X=0) = 0 for all τ > 0, the equation
can be simplified to

p(Tτ(Y) 6=X) = πp(Y <τ |X=1) = π
τ−1∑

y=0

p(y|X=1).

All probabilities p(y|X=1) are nonnegative and, thus, p(Tτ (Y) 6=X) is monotonically increas-
ing with τ . Therefore it has to hold that p(T1(Y) 6=X) ≤ p(Tτ(Y) 6=X) for all τ > 0.

A.3. Hamming Bit Error Rate

This section is concerned with Hamming codes as introduced, e.g., in [CT06, Section 7.11].
These codes can detect and correct single-bit errors within a block of l bits. For a block
length of l = 2k − 1, at least k bits must be “parity bits” which contain redundant informa-
tion. The goal of this section is to compute the bit error rate Ek(ϕ) for the l−k data bits in a
block of length l, if for all bits the error probability is ϕ. The results can then be compared,
for instance, against the error rate of a transmission without any error correction. In will in
the following be assumed that the single bit errors are pairwise stochastically independent.

Capturing bit corrections in an exact closed formula seems to be cumbersome and would
go beyond the scope of this thesis. Therefore, a simpler approach is taken: For a given
block length l = 2k − 1, it is assumed that the input is a sequence of l − k zeros. All
possible outputs are iterated through and are applied the error correction. The data bits
of the resulting bit sequence are then compared with the all-zeros input and the number
of differing bits is counted. As the probability of each enumerated output sequence can
be computed (based on ϕ), the expected number of bit errors can be computed with this
method. One can easily convince oneself that the results do not only apply to zero-only but
also to arbitrary input sequences of length l − k.

The disadvantage of enumerating outputs is of course that it scales badly with the block
length: For a block length of l bits, 2l outputs must be generated and processed. The results
of this section are therefore practically limited to k ≤ 5 error bits.

Let
– k be the number of parity check bits of the Hamming code of interest, l = 2k − 1 be

the block length,
– Ck : Bl → Bl be the function which does the bit correction, where B = {0, 1} is the

Boolean domain and Bl thus is the set of Boolean vectors (bit vectors) of length l,
– Dk : Bl × Bl → {0, . . . , l} be the Hamming distance of two Boolean vectors, i.e.

Dk(x, y) = |{i ∈ {1, . . . , l} | xi 6= yi}|,

72 A. Proofs

where xi is the i-th bit of the bit vector x.

Given a bit error probability ϕ for the transmission (i.e. not for the result after applying
Ck), the probability of obtaining output y ∈ Bl from input x ∈ Bl only depends on the
number of differing bits:

p(y|x) = ϕd(1 − ϕ)l−d, d := Dk(x, y).

Thus, it is possible to do the enumeration of all output values only once for every k, inde-
pendent of ϕ, by computing

si
k,d := |{y ∈ Bl | Dk(x, y) = d ∧ Ck(y)i 6= xi}| for x = ~0.

This definition makes si
k,d be the number of possible outputs whose Hamming distance to

the input is exactly d and whose i-th bit (potentially among other bits) is wrong.

For the i-th bit in the block, the bit error rate is then determined by

Ei
k(λ) =

∑

y∈Bl

Ck(y)i 6=xi

p(y|x) =

l∑

d=0

∑

y∈Bl

Dk(x,y)=d
Ck(y)i 6=xi

p(y|x) =

l∑

d=0

∑

y∈Bl

Dk(x,y)=d
Ck(y)i 6=xi

ϕd(1 − ϕ)l−d

=
l∑

d=0

ϕd(1 − ϕ)l−d · si
k,d

The first result of the enumeration is that all bits inside a block are equal, i.e. si
k,d = sj

k,d

for all i, j ∈ {0, . . . , l}, as expected. Therefore, let sk,d := si
k,d for arbitrary i. Analogously

Ek(ϕ) := Ei
k(ϕ). Table A.1 shows the sk,d resulting from enumerating all outputs and the

values of Ek(ϕ) for some chosen ϕ.

A.4. Generic Framework

Proof of Theorem 3.4, page 50. Firstly, all extremal values of g(t) are found by equat-
ing the first derivation with 0. Since only positive extremal values are of interest, t ≥ 0 is
implicitly assumed below.

g′(t) = −ϕ ·
t

t + c
e−tϕ +

c

(t + c)2
e−tϕ =

e−tϕ

(t + c)2

︸ ︷︷ ︸

0

·(c − tϕ(t + c)).

It follows that g′(t∗) = 0 iff t∗(t∗ + c) = c/ϕ, which immediately resolves to

t∗ = −c/2 ±
√

(c/2)2 + c/ϕ,

where only the claimed value is positive. Furthermore, g′(t) > 0 iff t(t + c) < c/ϕ, which
easily implies g′(t) > 0 for t ∈ [0, t∗) and therefore confirms the theorem’s claimed mono-
tonicity.

A.4. Generic Framework 73

k
d 2 3 4 5
0 0 0 0 0
1 0 0 0 0
2 3 9 21 45
3 1 19 119 575
4 16 392 4,760
5 12 1,036 30,828
6 7 2,093 156,793
7 1 3,067 639,535
8 3,368 2,154,360
9 2,912 6,115,200

10 1,967 14,800,929
11 973 30,817,059
12 336 55,619,200
13 84 87,527,020
14 15 120,567,645
15 1 145,732,275
16 154,807,920
17 144,614,880
18 118,726,055
19 85,501,325
20 53,855,256
21 29,551,236
22 14,044,875
23 5,734,365
24 1,990,040
25 579,488
26 139,083
27 26,705
28 3,920
29 420
30 31
31 1

ϕ
k 10% 1%
2 1.73 · 10−2 1.52 · 10−4

3 4.59 · 10−2 4.51 · 10−4

4 7.92 · 10−2 10.16 · 10−4

5 9.99 · 10−2 20.16 · 10−4

Table A.1. Distance-producing outputs sk,d (left) and bit error rate Ek(ϕ) (right).

74 A. Proofs

What remains to be verified is that g(t) really assumes a maximum at the given value.
Therefore, first g′(t) is transformed, exploiting that t∗ 6= 0 (for the division by t):

g′(t) =
e−tϕ

(t + c)2
· (c − tϕ(t + c)) =

t · e−tϕ

t + c
·

(
c

t(t + c)
− ϕ

)

= g(t) ·

(
c

t(t + c)
− ϕ

)

To confirm the maximum, the second derivation must be negative:

g′′(t) = g′(t) ·

(
c

t(t + c)
− ϕ

)

− g(t) ·
c(2t + c)

t2(t + c)2

︸ ︷︷ ︸

>0

At the extremal value, g′(t) = 0 by construction, so that the first term of g′′(t) vanishes,
leaving only a negative remainder.

B. Source Code

B.1. Adapted Exploit

The full sources of the adapted exploit consist of approximately 2000 lines of C++ code
(including comments and empty lines for better readability) of which only those parts are
shown here, which are relevant for understanding the implementation of the IRCC. This
explicitly excludes :

Program initialization. Sender and receiver of the exploit are configured through command
line arguments which have to be parsed at the beginning of the respective main()

function.

Debugging parts. Some parts have been added to the exploit code to obtain further infor-
mation from the IRCC, such as a histogram of interruption durations or an automatic
computation of a channel matrix.

External utilities. Several tools have been programmed for collecting and evaluating data,
like measuring timer interrupt and scheduling durations (ci of the framework), NIC
interrupt generation times (tg) or the timer interrupt frequency (f). The code related
to measuring interruptions often consists mainly of simplified receiver code (repeatedly
executing the measure duration() function). Evaluation code is mostly not more than
computing mean values and standard deviations.

In the following, sender and receiver implementation are presented separately in this
order, for each starting with the main function for sending and, respectively, receiving a bit
sequence via an IRCC. For both programs, the listing of the main function is then followed
by listings containing helper functions and classes.

For the beginning, Listing B.1 shows a small set of types used by sender and receiver that
have been defined to simplify reading and understanding the exploit code.

typedef unsigned in t u i n t ;

typedef unsigned in t u s e c s t ; /∗ I n t e g r a l microseconds . ∗/
typedef double f u s e c s t ; /∗ Float ing−po in t microseconds . ∗/

typedef unsigned long long t im i n g t ;

Listing B.1. Shortcut types.

76 B. Source Code

B.1.1. Sender Implementation

The sender implementation makes use of the helper classes Waiter (Listing B.4, page 79),
Generator (Listing B.5, page 80) and DataContainer (Listing B.6, page 82), as well as the small
helper function get next sync () (Listing B.3, page 79). The main sending function is shown
in Listing B.2 on page 78.

Main function. Function send() in Listing B.2 is the concrete counterpart to Listing 2.8
on page 23. It can be divided into three parts: Initialization, transmission, and output. The
initialization partly happens already before the function is executed, when the function’s
parameter objects are constructed (see below). In this function, the only notable initial-
ization is the one performed by the get next sync () function (see Listing B.3). Depending
on the sync parameter this function returns the time of the determined beginning of the
transmission in a struct timeval, here T begin. As the function’s code shows, transmissions
always begin when the number of seconds of the system clock next time reaches an integral
multiple of sync.

The well commented transmission code consists of an endless loop which starts with a
sched yield () to make sure that the following code is executed in a new timeslice. Afterwards,
the code waits until the expected end of this new timeslice and queries the clock to determine
which bit index (bit idx) is to be transmitted at exactly this point in time. If the bit index
exceeds the number of bits to be sent (bit<0, see Listing B.6), then the transmission loop
is left. Otherwise, if the bit is nonzero, then the sending statistics are updated and an
interrupt is generated. If the bit is zero, then nothing is done and the transmission loop
starts again at the beginning.

The output part of the function does nothing relevant for the transmission but simply
shows how many timeslices have been counted and how many times the interrupt-generating
function has been called.

Waiter. The intention of the Waiter class is to provide a simple way of waiting for a specified
amount of time. Listing B.4 shows that the main function of the class has been realized by
simply querying the clock in a busy loop (i.e. without yielding the CPU intermediately).
The alternative of setting up a timer (e.g. via setitimer ()) seems to be ineligible due to the
limited precision of normal timers. High precision timers (HPETs) have not been considered
as they were not available on the testing system.

The waiter object is constructed with the number of microseconds that have to be waited
when the object’s main function is called. On initialization of the sender process, this
duration is set to ts − tg − ε′, where ts is taken from a command line argument, tg is
empirically determined by generating a small number of interruptions and, finally, ε′ > 0 is
an additional pre-position amount. This way was preferred to directly specifying ε as ε ≥ tg
was determined to be necessary anyway.

Generator. The generation of interrupts has been implemented with flexibility in mind.
Therefore, the class for generating NIC interrupts has been derived from a generic interrupt
generation class, named base (contained in the C++ namespace Generator). In principle,
classes for arbitrary other interrupt sources can be added to the exploit this way.

The main function for generating NIC interrupts, NIC::operator()(), is nothing more than
an encapsulation of the sendto() system function. All parameters to the function, like the

B.1. Adapted Exploit 77

socket, the payload and the packet destination, have already been initialized by payload init ()

and sock init (). Besides the setup of network addresses and ports, the initialization code
makes the socked nonblocking and turns the socket into a broadcast socket if the destination
address seems to be a broadcast address. The advantages of broadcast addresses is that they
can be used in a testing network without any other computers attached. In such a setting,
normal IP addresses would lead to a failing Ethernet address lookup and, in consequence,
no sent packets except for the ARP (address resolution protocol) packets.

The idea of generating multiple interrupts to transmit more than just binary symbols (see
Section 3.4.3), is already implemented in the class, especially NIC::operator()(). That is to
say, the latter function determines the length of the payload to be sent based on the input.
However, this functionality does not have to be made use of.

Data container. The DataContainer (Listing B.6) manages a simple data structure that
holds the sequence to be sent. For the elements of the sequence, decimal digits are allowed,
but which values make sense depends on the used interrupt generator class and whether it
supports more values than the Boolean ones. If the data passed to the constructor is shorter
than the number nbits to be managed, then the data sequence is repeated sufficiently often.
(This allows for a succinct way of telling the sender to transmit, e.g., the sequence (10)k.)
During the transmission, only the get() member function is used, which returns −1 if the
index is out of range and the transmission should, thus, be terminated.

78 B. Source Code

bool send (Gene ra to r : : base &gene ra to r , DataConta iner &data ,
const Waiter &wa i t e r , u i n t sync , f u s e c s t du ra t i on ,
i n t v e r b o s i t y)

{
unsigned in t s l i c e s =0, i n t s =0, e r r s =0;
s t ruct t imev a l T, T beg in ;
s t d : : v ec to r <unsigned int> count s (data . g e t b i t s () , 0) ;

i f (! g e t n e x t s y n c (sync , T beg in)) return f a l s e ;
f o r (; ;) {

s c h e d y i e l d () ; // Ensure beg inning o f new t ime s l i c e
wa i t e r () ; // Wait u n t i l c l o s e b e f o r e end o f t ime s l i c e
ge t t imeo f d a y(&T, NULL) ; // Get current time
i f (t imercmp(&T, &T begin , <))

continue ; // Transmission not s t a r t e d
t ime r sub (&T, &T begin , &T) ; // T s ince beg in o f t ransmiss ion
s i z e t b i t i d x = (s i z e t) (t v m i c r o s (T) / du r a t i on) ;
Gene ra to r : : i n p u t t b i t = data . get (b i t i d x) ;
i f (b i t < 0) break ; // End o f transmiss i on
e l s e i f (b i t > 0) { // Generate (an) i n t e r r u p t (s)

++i n t s ;
++counts [b i t i d x] ;
i f (! g en e r a t o r (b i t)) ++e r r s ;

}
++s l i c e s ;

}
i f (v e r b o s i t y) { // Show c o l l e c t e d in format ion

s t ruct t imev a l T end ;
g e t t imeo f d a y(&T end , NULL) ;
s t d : : cout << ”End o f s end i ng : ” << T end

<< ” (” << T << ” s)\n” ;
i f (v e r b o s i t y >1) {

s i z e t n=data . g e t b i t s () ;
f o r (s i z e t i d x =0; idx<n ; ++id x)

s td : : cout << i d x << ” : ” << count s [i d x] << ’ \n ’ ;
}
s t d : : cout << s l i c e s << ” s l i c e s , ” <<

i n t s << ” p o t e n t i a l i n t e r r u p t s , ” <<
e r r s << ” e r r o r s .\ n” ;

}
return true ;

}

Listing B.2. Main function for sending a bit sequence.

B.1. Adapted Exploit 79

/∗ Compute and re turn the next time at which the seconds o f
∗ ge t t imeo fday () assumes an i n t e g e r mu l t i p l e o f ’ sync ’ . ∗/

bool g e t n e x t s y n c (unsigned in t sync , s t ruct t imev a l &t v s y n c)
{

i f (g e t t imeo f d a y(& tv s ync , NULL) != 0) return f a l s e ;
t v s y n c . t v u s e c = 0 ; // Wait u n t i l f u l l second always !
t v s y n c . t v s e c = sync ∗ (t v s y n c . t v s e c / sync + 1) ;
return true ;

}

Listing B.3. Obtaining the next synchronization time.

#def ine USECS PER SECOND (1000000)

c l a s s Waiter {
pr i va te :

s t ruct t imev a l tv ;
pub l i c :

// I n i t i a l i z e to always wai t <usecs> microseconds
Waiter (u s e c s t u s e c s) {

tv . t v s e c = u s e c s / USECS PER SECOND ;
tv . t v u s e c = u s e c s % USECS PER SECOND ;

}

// Wait f o r durat ion <tv> from the time o f the c a l l
void operator () (void) const {

s t ruct t imev a l tv end , tv now ;
g e t t imeo f d a y(&tv end , NULL) ;
t imeradd (&tv end , &tv , &tv end) ;
do {

ge t t imeo f d a y(&tv now , NULL) ;
} whi le (t imercmp(&tv now , &tv end , <));

}
} ;

Listing B.4. Waiting until a given point in time.

80 B. Source Code

typedef char i n p u t t ;

c l a s s base {
protected :

bool ok ;

pub l i c :
base () : ok (f a l s e) {} ;
v i r t u a l ˜ base () {} ;

v i r t u a l bool operator () (i n p u t t i n pu t) = 0 ;
i n l i n e operator bool (void) const { return ok ; } ;

u s e c s t du r a t i on (i n p u t t i n pu t) ;
} ;

c l a s s NIC : pub l i c base {
pr i va te :

i n t sock ;
s t ruct s o c k a d d r i n d e s t ;
char ∗ pay load ;
s s i z e t i n p u t u n i t ;
i n p u t t max input ;
i n t f l a g s ;

bool p a y l o a d i n i t () ;
bool s o c k i n i t () ;

pub l i c :
NIC (const i n a d d r &addr , i n p o r t t port , s s i z e t u n i t l e n ,

i n p u t t input max) ;
// params : := <addr / dot ted> ’ : ’ <port> ’ , ’ <unit−l eng th>
NIC (const s t d : : s t r i n g ¶ms , i n p u t t input max) ;
v i r t u a l ˜NIC () ;

v i r t u a l bool operator () (i n p u t t i n pu t) ;
} ;

bool NIC : : operator () (i n p u t t i n pu t)
{

i f (! i n pu t) return true ;
// Input i s not checked aga in s t max input !
s s i z e t l e n = i n p u t u n i t ∗(s i z e t) i n pu t ;
return sendto (sock , pay load , l en , f l a g s , (s t ruct sockaddr ∗)& des t ,

s i z eo f (d e s t)) == l e n ;
}

Listing B.5. Interrupt generation (classes and main function).

B.1. Adapted Exploit 81

#def ine BCAST MASK h ton l (0 x000000 f f)

bool NIC : : s o c k i n i t () {
s t ruct s o c k a d d r i n l o c a l ;
l o c a l . s i n f a m i l y = de s t . s i n f a m i l y = AF INET ;
l o c a l . s i n a d d r . s a dd r = h t on l (INADDR ANY) ;
l o c a l . s i n p o r t = htons (0) ;
i f ((sock = socke t (AF INET , SOCK DGRAM, 0)) < 0) return f a l s e ;
// Broadcast d e s t i n a t i on ? Simply check f o r .255 at end .
i f ((d e s t . s i n a d d r . s a dd r & BCAST MASK) == BCAST MASK) {

i n t on = 1 ;
i f (s e t s o ckop t (sock , SOL SOCKET , SO BROADCAST, &on ,

s i z eo f (on)) != 0) {
c l o s e (sock) ;
return f a l s e ;

}
}
i f (b ind (sock , (s t ruct sockaddr ∗)& l o c a l , s i z eo f (l o c a l)) < 0) {

c l o s e (sock) ;
return f a l s e ;

}
i n t f l a g s = f c n t l (sock , F GETFL , 0) ;
i f (f l a g s < 0) return f a l s e ;
return f c n t l (sock , F SETFL , f l a g s |= O NONBLOCK) != −1;

}

bool NIC : : p a y l o a d i n i t () {
i f (! (pay load = new char [i n p u t u n i t ∗max input])) return f a l s e ;
// The content i t s e l f has no meaning .
memset (pay load , ’ \0 ’ , i n p u t u n i t ∗max input) ;
return true ;

}

NIC : : NIC (const i n a d d r &addr , i n p o r t t port ,
s s i z e t u n i t l e n , i n p u t t input max)

: base () , i n p u t u n i t (u n i t l e n) , max input (input max) , f l a g s (0) {
de s t . s i n a d d r = addr ;
d e s t . s i n p o r t = por t ;
ok = p a y l o a d i n i t () && s o c k i n i t () ;

}

NIC : : ˜ NIC () {
i f (sock >= 0) c l o s e (sock) ;
i f (pay load) delete [] pay load ;

}

Listing B.5. Interrupt generation (initialization and destruction).

82 B. Source Code

c l a s s DataConta iner {
pr i va te :

bool ok ;
Gene ra to r : : i n p u t t ∗ b i t s , max ;
s i z e t l en , n ;

pub l i c :
DataConta iner (const char ∗ const data , s i z e t n b i t s) ;
˜ DataConta iner () { i f (b i t s) delete [] b i t s ; }

i n l i n e operator bool (void) const { return ok ; }
Gene ra to r : : i n p u t t get (s i z e t i d x) const ;

s i z e t g e t b i t s () const { return n ; }
Gene ra to r : : i n p u t t get max () const { return max ; }

} ;

DataConta iner : : DataConta iner (const char ∗ const data , s i z e t n b i t s)
: ok (f a l s e) , b i t s (NULL) , max (0) , l e n (0) , n (n b i t s)

{
f o r (const char∗ pos=data ; ∗pos ; ++pos ,++ l e n) {

// Current ly on ly [0 . . 9]
i f (! (∗ pos >= ’ 0 ’ && ∗pos <= ’9 ’))

return ; // i n v a l i d
}
b i t s = new Gene ra to r : : i n p u t t [l e n] ;
i f (! b i t s) return ;
f o r (unsigned i =0; i<l e n ; ++i) {

b i t s [i] = (data [i] − ’ 0 ’) ;
i f (b i t s [i] > max) max = b i t s [i] ;

}
i f (n == 0) n = l e n ;
ok = true ;

}

Gene ra to r : : i n p u t t DataConta iner : : get (s i z e t i d x) const

{
i f (i d x >= n) return −1; // Index out o f range
i d x %= l e n ; // Get index i n s i d e pa t t e rn
return b i t s [i d x] ;

}

Listing B.6. Storage for a (repeating) bit sequence.

B.1. Adapted Exploit 83

B.1.2. Receiver Implementation

Like the sender implementation, also the receiver code is splitted up into several parts,
the most important being a class for evaluating the measured interruptions (Count in List-
ing B.10, page 87) and a class for coping with time (TimeManager in Listing B.11, page 89).

Based on whether the preprocessor conditional SHORT RECEIVER is defined or not, the
receiver either shortens its timeslices or receives during its full timeslices (see Section 3.4.2).
The only positions where this is relevant are Listings B.8 (page 86) and B.9 (page 86).

In the initialization of the receiver there is one part that is worth mentioning: The de-
termination of what is called base in Listing 2.2 on page 13, i.e. the duration tm of an
uninterrupted measuring. To obtain this value, the measure duration() function is executed
repeatedly in a loop for a certain number of times and the minimum of all measured dura-
tions is taken. This is based on the assumption that when repeating the measuring often
enough then some of the measurings will be uninterrupted (minimal).

Main function. Function receive () of Listing B.7 realizes the main function for the receiv-
ing part of an IRCC transmission. It corresponds to the homonymous pseudo code function
in Listing 2.9 on page 23. Similar to the sender, it can also be separated into three parts,
the initialization, the transmission loop and output code.

In the initialization phase, besides the initialization of variables, also make short timeslice ()

is called. This function is only relevant if shortened timeslices have been activated (at
compile time) as otherwise it does not contain any code (see below and/or Listing B.9).

The endless loop for the reception of data from the sender can be split into the two
phases that have already been mentioned several times in the main part of the thesis:
Measuring and evaluating. The code for the measuring phase is depicted in Listing B.8
and is relatively unspectacular. Between two time measurings, function measure duration()

repeatedly performs a computation (1.5k for some chosen k ∈ N) whose result is ignored
and whose only intention is to consume a constant amount of CPU time. More elaborate
is the evaluation of the measuring’s outcome. The aim here is to keep the evaluation phase
as short as possible and, thus, to especially not pollute it with avoidable system calls. This
led to the case distinction based on the evaluator’s return value, which determines whether
the transmission is over or not. If the evaluator found out that the measured duration is
not within the expected range for sender-initiated interrupts, then it does not query the
clock for the current time and does not even know whether the transmission should be
over. Consequently it returns eUnchecked to signal to the main function that it might – after
a certain number of iterations without the time being checked – want to query the clock
manually.

Finally, the output code can basically be reduced to making the evaluator object print
out its collected data. It will be described below.

Measuring interruptions. How interruptions are measured has already been shown slightly
simplified in Listing 2.2 on page 13. Listing B.8 shows the real code, which does not
differ much from the simplification. The code for the read tsc () function that is passed to
measure duration() by receive () is omitted here. The interested reader is advised to look up
how, e.g., the Linux kernel defines the function rdtscll () to see the assembly code for reading
from this architecture-dependent CPU register.

84 B. Source Code

Short reception. In order to shorten the receiver’s timeslices, timers are set up via the
setitimer () system function. For the experiments, the timer interval was set to only few
microseconds in order to have the timer occur shortly after the first timer interrupt within
the receiver’s timeslice. Once the SIGALRM signal is raised, stop measuring is set to true by
sig timer () to interrupt the measuring in measure duration() and have it return false . This
result is then handled by the main reception function and makes it call make short timeslice ().
As Listing B.9 shows, this yields the CPU and sets up the timer again to shorten also the
following timeslice.

Evaluation. Similar to the implementation of the interrupt generation, also the interrup-
tion evaluation has been made flexible. A base class (again named base, but inside the
C++ namespace Evaluator) in Listing B.10 provides the interface for submitting measured
interruption durations and for finishing a single bit or the whole transmission.

Derived from this base class is the Count class (same listing), which for each bit only counts
the number of interruptions whose durations fall into a certain contiguous range. All values
are stored in a vector and are printed out line by line in the finish transmission () method.
The code of this class is rather simple, so no further comments on its functionality are
expected to be necessary. What however should be noted is that no bit index determination
takes place if the measured interruption being evaluated is not within the specified range.
This saves time and shortens the evaluation phase.

Time manager. The time and bit index handling has been swapped out to the TimeManager

class of Listing B.11. Its function check current bit () is used in the main reception function
as well as in the evaluation class described above. The intention of this function is to
(a) check whether the transmission has already started, (b) determine the current bit index,
(c) return the last handled bit index and also (d) return whether either the last and current
bit differ, or the end of the transmission has been reached.

B.1. Adapted Exploit 85

bool r e c e i v e (Eva l u a t o r : : base<t im i n g t > &eva l u a t o r , TimeManager &tm ,
long mea s u r e i t e r s , const s t ruct i t i m e r v a l &i t v ,
i n t v e r b o s i t y) {

t im i n g t t , dt ;
unsigned in t MU = MAX UNINTERRUPTED(me a s u r e i t e r s) ;
unsigned in t n = MU;

ma k e s h o r t t i m e s l i c e (i t v) ;
f o r (; ;) {

i f (! mea s u r e du r a t i on (r e a d t s c , me a s u r e i t e r s , t , dt)) {
ma k e s h o r t t i m e s l i c e (i t v) ;
continue ;

}
switch (e v a l u a t o r (dt , tm , s td : : cout)) {

case Eva l u a t o r : : eUnchecked : // Time has not been checked
i f (−−n == 0) { // Regu lar l y check time ”manually ”

n = MU;
unsigned in t o l d b i t ;
B i t S t a t u s bs = tm . c h e c k c u r r e n t b i t (o l d b i t) ;
i f (bs == bUnchanged) break ;
e v a l u a t o r . f i n i s h b i t (o l d b i t , s t d : : cout) ;
i f (bs == bEOT) goto done ;

}
break ;

case Eva l u a t o r : : eNotEOT : // EOT i s not reached
n = MU;
break ;

case Eva l u a t o r : : eEOT : // end o f transmiss ion (EOT)
goto done ;

}
}

done :
i f (v e r b o s i t y) {

s t ruct t imev a l T end ;
g e t t imeo f d a y(&T end , NULL) ;
s t d : : cout << ”End o f r e c e p t i o n : ” << T end << ’ \n ’ ;

}
e v a l u a t o r . f i n i s h t r a n s m i s s i o n (s td : : cout , tm , v e r b o s i t y >1);
return true ;

}

Listing B.7. Main function for receiving a bit sequence.

86 B. Source Code

#i f d e f SHORT RECEIVER
// For i n t e r r u p t i n g measure durat ion () , e . g . from s i g n a l hand ler
extern v o l a t i l e bool s t op mea su r i ng ;
#end i f

#def ine EXPONENT 20UL

i n l i n e bool mea su r e du r a t i on (t im i n g f n get t ime ,
long i t e r a t i o n s , t im i n g t &t , t im i n g t &dt)

{
t = get t ime () ;
unsigned long i , j ;
v o l a t i l e double v = 1 . 0 ;
f o r (dt=0, i=i t e r a t i o n s ; i >0; −− i) {

#i f d e f SHORT RECEIVER
i f (s t op mea su r i ng) return f a l s e ;

#end i f

f o r (j=EXPONENT; j >0; −− j) v ∗= 1 . 5 ;
}
dt = get t ime () − t ;
return true ;

}

Listing B.8. Measuring interruptions and their duration.

#i f d e f SHORT RECEIVER
// S i gna l hand ler func t i on f o r SIGALRM
void s i g t i m e r (i n t s i g n r) { s t op mea su r i ng = true ; }
#end i f

void ma k e s h o r t t i m e s l i c e (const s t ruct i t i m e r v a l &i t v) {
#i f d e f SHORT RECEIVER

// Yie ld and se tup t imer f o r next shor t t ime s l i c e
s c h e d y i e l d () ;
s t op mea su r i ng = f a l s e ;
s e t i t i m e r (ITIMER REAL , &i t v , NULL) ;

#end i f

}

Listing B.9. Enabling shortened receiver timeslices.

B.1. Adapted Exploit 87

enum Ev a l u a t i o n S t a t u s { eUnchecked , eEOT , eNotEOT } ;

template <c l a s s v a l u e t , c l a s s coun t t=unsigned long>
c l a s s base {

protected :
v a l u e t o f f s e t ;
u i n t b i t s ;
bool ok ;

pub l i c :
base (v a l u e t v a l o f f s e t , u i n t nb i t s , bool i s o k=f a l s e)

: o f f s e t (v a l o f f s e t) , b i t s (n b i t s) , ok (i s o k) {} ;
v i r t u a l ˜ base () {} ;
v i r t u a l Ev a l u a t i o n S t a t u s operator () (v a l u e t v ,

TimeManager &tm , s td : : ost ream &out) = 0 ;
i n l i n e operator bool (void) const { return ok ; } ;
v i r t u a l void f i n i s h b i t (u i n t b i t i d x , s t d : : ost ream &out) = 0 ;
v i r t u a l void f i n i s h t r a n s m i s s i o n (s td : : ost ream &out ,

const TimeManager &tm , bool v e r bo s e) = 0 ;
} ;

template <c l a s s v a l u e t , c l a s s coun t t=unsigned long>
c l a s s Count : pub l i c base<v a l u e t , coun t t > {

pr i va te :
c oun t t cur ;

protected :
typedef s t d : : v ec to r <coun t t > CountL i s t ;
Coun tL i s t count s ;
v a l u e t min , max ;

pub l i c :
Count (v a l u e t o f f s e t , u i n t nb i t s , v a l u e t vmin , v a l u e t vmax)

: base<v a l u e t , coun t t >(o f f s e t , n b i t s) , cu r (0) ,
count s (n b i t s) , min (vmin+o f f s e t) , max (vmax+o f f s e t) {
th is−>ok = (max >= min) ;

}
Count (v a l u e t o f f s e t , u i n t nb i t s , const s t d : : s t r i n g ¶ms) ;
E v a l u a t i o n S t a t u s operator () (v a l u e t v , TimeManager &tm ,

s td : : ost ream &out) ;

void f i n i s h b i t (u i n t b i t i d x , s t d : : ost ream &out) {
count s [b i t i d x] = cur ;
cu r = 0 ; // Reset counter f o r next b i t

}
void f i n i s h t r a n s m i s s i o n (s td : : ost ream &out ,

const TimeManager &tm , bool v e r bo s e) ;
} ;

Listing B.10. Evaluation of measured durations (class declaration).

88 B. Source Code

/∗ Handle a measured va lue <v> (check i f i t i s in the wanted
∗ range [min ,max] and , i f i t i s , perform the r i g h t ac t i on
∗ depending on the b i t index) . ∗/

template <c l a s s v a l u e t , c l a s s coun t t >
Ev a l u a t i o n S t a t u s Count<v a l u e t , coun t t > : : operator () (v a l u e t v ,

TimeManager &tm , s td : : ost ream &out) {
i f (v < min | | v > max) return eUnchecked ;
u i n t o l d b i t ;
switch (tm . c h e c k c u r r e n t b i t (o l d b i t)) {

case bBeforeTrans : return eNotEOT ;
case bUnchanged : break ;
case bEOT: f i n i s h b i t (o l d b i t , out) ; return eEOT ;
case bChanged : f i n i s h b i t (o l d b i t , out) ; break ;

}
++cur ;
return eNotEOT ;

}

/∗ Print a l i s t o f a l l c o l l e c t e d counts in the format
∗ <b i t index> ’ : ’ <counted value> ∗/

template <c l a s s v a l u e t , c l a s s coun t t >
void Count<v a l u e t , coun t t > : : f i n i s h t r a n s m i s s i o n (s td : : ost ream &out ,

const TimeManager &tm , bool v e r bo s e)
{

typename CountL i s t : : c o n s t i t e r a t o r i t e r , end=counts . end () ;
s i z e t i d x =0;
f o r (i t e r=counts . b eg i n () ; i t e r !=end ; ++i t e r ,++ i d x)

out << i d x << ” : ” << ∗ i t e r << ’ \n ’ ;
}

Listing B.10. Evaluation of measured durations (cont.).

B.1. Adapted Exploit 89

enum B i t S t a t u s { bBeforeTrans , bUnchanged , bChanged , bEOT } ;

c l a s s TimeManager {
pr i va te :

s t ruct t imev a l T beg in ;
u i n t b i t s , c u r b i t ;
f u s e c s t du ra t i on , t i m e s l i c e ;

pub l i c :
TimeManager (u i n t sync , u i n t nb i t s , f u s e c s t b i t d u r a t i o n ,

f u s e c s t t i m e s l i c e l e n g t h , u s e c s t skew)
: b i t s (n b i t s) , c u r b i t (0) , d u r a t i on (b i t d u r a t i o n) ,

t i m e s l i c e (t i m e s l i c e l e n g t h)
{

g e t n e x t s y n c (sync , T beg in) ;
t v advance (T begin , skew) ;

}

B i t S t a t u s c h e c k c u r r e n t b i t (u i n t &b i t i d x) {
b i t i d x = c u r b i t ; // re turn the ∗ o ld ∗ index
s t ruct t imev a l T ;
g e t t imeo f d a y(&T, NULL) ; // Get current time
i f (t imercmp(&T, &T begin , <)) // Too ear l y ?

return bBeforeTrans ;
t ime r sub (&T, &T begin , &T) ; // T s ince transmiss ion beg in
c u r b i t = (u i n t) (t v m i c r o s (T) / du r a t i on) ;
i f (c u r b i t == b i t i d x)

return bUnchanged ;
i f (c u r b i t >= b i t s)

return bEOT; // End−Of−Transmission
return bChanged ;

}

f u s e c s t g e t d u r a t i o n () const { return du r a t i on ; }
f u s e c s t g e t t i m e s l i c e () const { return t i m e s l i c e ; }

} ;

Listing B.11. Time and bit index management.

90 B. Source Code

B.1.3. Original Exploit

For the sake of completeness, the run for () code that was used in the original exploit code
and that is also referenced in the pseudo code of Listings 2.1 (page 12) and 2.2 (page 13),
is shown in Listing B.12. It repeats a code block until a given amount of time has elapsed.

Syntactically, run for () is intended to resemble an ordinary C/C++ control structure (like,
e.g., while) and is therefore defined as a macro. It sets up a timer and repeats the following
code block until the SIGALRM signal, indicating the expiration of the timer, occurred. In
consequence, the may actually execute longer than the specified amount of time (either
because the signal occurs too late or because the code to be repeated executes too long),
but is never interrupted earlier than specified.

Before the run for () macro is used, the function setup alarmhandler () must have been called
to setup the correct handler for the timer signal. (This overwrites the previous handler and
therefore cannot and must not be used with other timers.)

/∗ SIGALRM handl ing f o r s e t i t ime r () . ∗/
v o l a t i l e bool awa i t i n g a l a rm ; /∗ no op t im i z a t i on s ! ∗/
void h a n d l e s i g a l a rm (i n t s i g n r) { awa i t i n g a l a rm = f a l s e ; }
bool s e t u p a l a rmha nd l e r () {

return s i g n a l (SIGALRM, h a n d l e s i g a l a rm) != SIG ERR ;
}

/∗ Setup an i n t e r v a l t imer t ha t f i r e s a f t e r <duration> mi l l i s e c ond s
∗ from the time the func t i on i s c a l l e d . ∗/

bool s e t d u r a t i o n t i m e r (unsigned in t du r a t i on)
{

s t ruct i t i m e r v a l i t v ;
memset(& i t v , 0 , s i z eo f (s t ruct i t i m e r v a l)) ;
i t v . i t v a l u e . t v s e c = du r a t i on /MSECS PER SECOND;
i t v . i t v a l u e . t v u s e c = 1000∗(du r a t i on%MSECS PER SECOND) ;
return (s e t i t i m e r (ITIMER REAL , &i t v , NULL) == 0) ;

}

/∗ Note : This c on s t ru c t i s f r a g i l e . Do not use i t in code l i k e
∗ i f (cond i t i on)
∗ run for (durat ion) {
∗ s t u f f () ;
∗ }
∗ as the re are no paren the se s around the l i n e s o f the macro . ∗/

#def ine r u n f o r (du r a t i on) \
awa i t i n g a l a rm = true ; \
i f (s e t d u r a t i o n t i m e r (du r a t i on)) \

whi le (awa i t i n g a l a rm)

Listing B.12. Repeating code (approximately) for a given amount of time.

B.2. Modified FreeBSD Scheduler 91

/∗ Determine sender and r e c e i v e r by t h e i r e f f e c t i v e group ID ∗/
#def ine IS QUANTUM TIME SENDER(td) ((td)−>t d uc r ed−>c r g i d == 2222)
#def ine IS QUANTUM TIME RECEIVER(td) ((td)−>t d uc r ed−>c r g i d == 2223)
#def ine IS QUANTUM TIME RELATED(td) \

(IS QUANTUM TIME SENDER(td) | | IS QUANTUM TIME RECEIVER(td))

Listing B.13. Determining sender and receiver tasks.

B.2. Modified FreeBSD Scheduler

This section shows the modifications made to theLinux FreeBSD

kernel/sched.c kern/sched ule.c

struct rq struct tdq
schedule() sched switch(),

tdq choose()
scheduler tick () sched clock ()
sched init () tdq setup()

Table B.1

FreeBSD 7 scheduler, whose aim were the same as
for the Linux scheduler but which were in the end
not used for conducting experiments. All listings
shown in this section are excerpts from the modi-
fied sys/kern/sched ule.c. The original has CVS
version 1.214.2.3 (dating April 19, 2008). Table B.1
juxtaposes the names of the affected file and the
most relevant functions and data structures for the
modification of Linux and FreeBSD.

Note that tdq choose() in Listing B.14c has been reduced by two KASSERT statements
(which result in a kernel panic if a passed condition is satisfied) to ease the understanding
of the changes.

In FreeBSD, the timeslices for all tasks (threads) are of the same length of, by default,
approximately 100ms (the number of ticks for achieving this length is stored in the global
variable sched slice). Therefore, this section does not contain any code corresponding to
Listing 2.4 on page 19.

92 B. Source Code

(a) Data structure for inclusion into struct tdq.

/∗ This s t r u c t u r e i s added to each CPU’ s thread queue to ach i e ve
∗ a f e e l i n g o f f i x e d quanta f o r a c e r t a i n su b s e t o f a l l t h reads .
∗/

s t ruct f i x ed quantum {
/∗ Ticks to wai t u n t i l nex t f i x ed−quantum thread may run . ∗/
u i n t f q w a i t t i c k s ;
/∗ S t a t i s t i c s . ∗/
u i n t f q r e j e c t s ; /∗ Number o f r e j e c t e d f i x ed−quantum threads ∗/
u i n t f q max wa i t ; /∗ Current maximum va lue o f f q w a i t t i c k s ∗/

} ;

(b) Recording a leaving sender task in sched switch().

/∗ For quantum−t ime senders , save the number o f remaining t i c k s .
∗ Obvious ly on ly i f the r e s p e c t i v e thread v o l u n t a r i l y r e l e a s e d
∗ the CPU or b locked b e f o r e the s l i c e exp i red . ∗/

i f (IS QUANTUM TIME SENDER(td))
f i x e d q u a n t um upd a t e l e a v i n g (tdq , t s) ;

(c) Checking whether to block a receiver task with tdq choose().

s t a t i c s t ruct t d s ch ed ∗ t dq choos e (s t ruct tdq ∗ tdq)
{

s t ruct t d s ch ed ∗ t s ;

TDQ LOCK ASSERT(tdq , MAOWNED) ;
t s = runq choos e (&tdq−>t d q r e a l t i m e) ;
i f (t s != NULL && f i x ed quan t um run ch e ck (tdq , ts−>t s t h r e a d))

return (t s) ;
t s = runq choos e f r om (&tdq−>t dq t imesha r e , tdq−>t d q r i d x) ;
i f (t s != NULL && f i x ed quan t um run ch e ck (tdq , ts−>t s t h r e a d))

return (t s) ;

t s = runq choos e (&tdq−>t d q i d l e) ;
return (t s) ;

}

(d) Updating data structure in sched clock ().

/∗ Update the f i x ed−quantum wai t va lue and
∗ r e qu e s t a reschedu le , i f necessary . ∗/

i f (f i x ed quan t um c l o ck upda t e (tdq))
td−>t d f l a g s |= TDF NEEDRESCHED;

Listing B.14. Steps in blocking receiver tasks.

B.2. Modified FreeBSD Scheduler 93

s t a t i c i n l i n e void f i x e d quan t um s e t up (s t ruct f i x ed quantum ∗ f q) {
/∗ I n i t i a l l y , a f i x ed−queue thread i s a l l owed to s t a r t ,
∗ as no o the r one has a l ready been run . ∗/

fq−>f q w a i t t i c k s = 0 ;

fq−> f q r e j e c t s = 0 ; /∗ No thread r e j e c t e d so f a r . ∗/
fq−>f q max wa i t = 0 ; /∗ Nobody wai ted ye t . ∗/

}

s t a t i c i n l i n e i n t f i x e d quan t um c l o ck upda t e (s t ruct tdq ∗ tdq) {
/∗ Return TRUE i f f f q w a i t t i c k s j u s t changed to 0 . ∗/
i f ((tdq)−> t dq f q . f q w a i t t i c k s == 0) return FALSE ;
return (−−(tdq)−> t dq f q . f q w a i t t i c k s == 0) ;

}

s t a t i c i n l i n e void f i x e d q u a n t um upd a t e l e a v i n g (s t ruct tdq ∗ tdq ,
s t ruct t d s ch ed ∗ t s) {

/∗ When a f i xed−quantum thread i s s topp ing i t s execut ion , the
∗ number o f i t s remaining s l i c e t i c k s must be s tored to avoid
∗ s c hedu l i n g another f i x ed−quantum thread f o r t h i s many t i c k s . ∗/

s t ruct f i x ed quantum ∗ f q = &tdq−>t dq f q ;
fq−>f q w a i t t i c k s = ts−> t s s l i c e ;
/∗ The f o l l ow i n g l i n e t r i g g e r s the ’ ts−> t s s l i c e = s c h e d s l i c e ’
∗ l i n e in tdq add in order to make the thread ge t a f u l l new
∗ s l i c e when i t i s executed next time . ∗/

t s−> t s s l i c e = 0 ;
fq−>f q max wa i t = max(fq−>f q w a i t t i c k s , fq−>f q max wa i t) ;

}

s t a t i c i n l i n e i n t f i x e d quan t um run ch e ck (s t ruct tdq ∗ tdq ,
s t ruct t h r ead ∗ td) {

/∗ Non−quantum−t ime senders may always be schedu l ed . ∗/
i f (! IS QUANTUM TIME SENDER(td)) return TRUE;

/∗ A f i xed−quantum thread may only be schedu l ed i f t he re are no
∗ more wai t t i c k s l e f t (from a prev ious f i x ed−quantum thread
∗ not us ing i t s whole t i c k s) . ∗/

i f (tdq−>t dq f q . f q w a i t t i c k s == 0) return TRUE;
/∗ As the f i x ed−quantum thread w i l l be r e j e c t e d ,
∗ the counter i s inc reased . ∗/

++tdq−>t dq f q . f q r e j e c t s ;
return FALSE ;

}

Listing B.15. Helper functions for blocking receiver tasks.

94 B. Source Code

Bibliography

[Aas05] J. Aas. Understanding the Linux 2.6.8.1 CPU scheduler. 2005.

[Ahs00] K. Ahsan. Covert channel analysis and data hiding in TCP/IP. Master’s thesis,
University of Toronto, 2000.

[AK02] K. Ahsan and D. Kundur. Practical data hiding in TCP/IP. In Proceedings of
the Workshop on Multimedia Security, 2002.

[BC05] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly & Asso-
ciates, third edition, 2005.

[CBS04] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing channels: design
and detection. In Proceedings of the 11th ACM conference on Computer and
communications security, pages 178–187, 2004.

[CRKH05] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly
Media, Inc., third edition, 2005.

[CT06] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, second edition, 2006.

[Den76] D. E. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–243, 1976.

[Gir87] C. G. Girling. Covert channels in LAN’s. IEEE Transactions on Software
Engineering, 13(2):292–296, 1987.

[Gli93] V. Gligor. A guide to understanding covert channel analysis of trusted systems.
CSC-TG-030, Rainbow Series (Light Pink Book), 1993.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

[Gra93] J. W. Gray. On introducing noise into the bus-contention channel. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 90–98, 1993.

[Hoe66] P. G. Hoel. Introduction to Mathematical Statistics. John Wiley & Sons, Inc,
third edition, 1966.

[Hu91] W.-M. Hu. Reducing timing channels with fuzzy time. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 8–20, 1991.

[Hus78] J. C. Huskamp. Covert Communication Channels in Timesharing Systems.
Technical report UCB-CS-78-02, University of California, 1978.

96 Bibliography

[Kem83] R. A. Kemmerer. Shared resource matrix methodology: An approach to iden-
tifying storage and timing channels. ACM Transactions on Computer Systems,
1(3):256–277, 1983.

[Kem02] R. A. Kemmerer. A practical approach to identifying storage and timing chan-
nels: Twenty years later. In Proceedings of the Annual Computer Security
Applications Conference, pages 109–118, 2002.

[KW91] P. A. Karger and J. C. Wray. Storage channels in disk arm optimization. In
IEEE Symposium on Security and Privacy, pages 52–63, 1991.

[Lam73] B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973.

[LTWW94] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-
similar nature of ethernet traffic (extended version). Networking, IEEE/ACM
Transactions on, 2(1):1–15, 1994.

[McH95] J. McHugh. Chapter 8: Covert channel analysis from handbook for the
computer security certification of trusted systems. Technical Memorandum
5540:080A, Naval Research Laboratory, 1995.

[Mil89] J. K. Millen. Finite-state noiseless covert channels. In CSFW, pages 81–86,
1989.

[ML05] S. J. Murdoch and S. Lewis. Embedding covert channels into TCP/IP. In
Information Hiding: 7th International Workshop, volume 3727 of LNCS, pages
247–261, 2005.

[MM94] I. S. Moskowitz and A. R. Miller. Simple timing channels. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 56–64, 1994.

[Mol02] I. Molnar. Goals, design and implementation of the new ultra-scalable
O(1) scheduler. http://lxr.linux.no/linux+v2.6.22.9/Documentation/

sched-design.txt, 2002. [Online; accessed 01-December-2008].

[Mol07] I. Molnar. The CFS scheduler. http://people.redhat.com/mingo/

cfs-scheduler/sched-design-CFS.txt, 2007. [Online; accessed 01-
December-2008].

[MS07] H. Mantel and H. Sudbrock. Comparing countermeasures against interrupt-
related covert channels in an information-theoretic framework. In 20th IEEE
Computer Security Foundations Symposium, CSF 2007, pages 326–340, 2007.

[MS08] H. Mantel and H. Sudbrock. Information-theoretic modeling and analysis of
interrupt-related covert channels. In Pre-Proceedings of the Workshop on For-
mal Aspects in Security and Trust (FAST), 2008.

[Rea97] Realtek Semiconductor Corp. RTL8029AS - Realtek PCI Full-Duplex Ethernet
Controller with built-in SRAM, 1997.

Bibliography 97

[Rob03] J. Roberson. ULE: A modern scheduler for FreeBSD. In Proceedings of the BSD
Conference, pages 17–28, 2003.

[Rus92] J. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, Computer Science Laboratory, SRI International,
1992.

[Rut04] J. Rutkowska. The implementation of passive covert channels in the Linux
kernel. In 21th Chaos Communication Congress, 2004.

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–656, 1948.

[SMB06] G. Shah, A. Molina, and M. Blaze. Keyboards and covert channels. In Proceed-
ings of the 15th conference on USENIX Security Symposium, 2006.

[Smi07] M. Smihily. Internet usage in 2007 – households and individuals. Eurostat
DATA in focus, 2007.

[Tan01] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, second edition,
2001.

[TG88] C. R. Tsai and V. D. Gligor. A bandwidth computation model for covert storage
channels and its applications. In Proceedings of IEEE Symposium on Security
and Privacy, pages 108–121, 1988.

[Tro98] J. Trostle. Timing attacks against trusted path. In IEEE Symposium on Security
and Privacy, pages 125–135, 1998.

[Wik08] Wikipedia. G-test — Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/G-test, 2008. [Online; accessed 01-December-2008].

[Wol05] J. Wolf. Linux-Unix-Programmierung. Galileo Computing, 2005.

98 Bibliography

Index

Bernoulli trial, 32
Bit error rate, 35
Bit interval, 11

length, 11, 29

Capacity, 6, 7

Channel
covert, 1, 3
discrete, 5
interquantum-time, 4, 16
interrupt-related, 1, 4

memoryless, 5, 6
overt, 3
quantum-time, 4, 14, 15
storage, 3
timing, 3

Collision (of interrupts), 32, 37

Compound measuring, 43, 49
Configuration

basic, 7
extended, 9

Distribution
binomial, 32
Poisson, 50
uniform, 44, 51

Entropy, 6

False positives, 27, 54

G-test, 33
Gap (between bit intervals), 25, 38

Hamming code, 36, 71

Information
mutual, 7, 67, 70

Interrupt, 4
delay, 37, 41
duration, 11, 41

generation, 41
handler, 4
request number, 4, 8

Maximum likelihood estimator, 33
Maximum transmission unit, 58
Misaccounting, 28, 33, 44

Polling, 4, 39

Scheduler, 14
O(1), 16
O(n), 16
4BSD, 16
CFS, 16
fixed quantum, 15
ULE, 16

Skew, 25, 38

Task, 16
receiver, 15, 17
sender, 15, 17

Threshold, 14, 35

Timer
interrupt duration, 41
interval, 41

Timeslice, 15
granularity, 18

Transition matrix
lossless, 30
lossy, 32

