
Appeared in P. Degano et al. (Ed.): FAST 2008, LNCS 5491, pp. 35–49, 2009

c© Springer-Verlag Berlin Heidelberg 2009

Who Can Declassify?

Alexander Lux and Heiko Mantel

Department of Computer Science, TU Darmstadt
Hochschulstraße 10, 64289 Darmstadt, Germany

{lux,mantel}@cs.tu-darmstadt.de

Abstract. Noninterference provides reliable guarantees for the confi-
dentiality of sensitive information, but it is too restrictive if exceptions
shall be permitted. Although many approaches to permitting and con-
trolling exceptional information release have been proposed, the problem
of declassification is not yet satisfactorily solved. The aim of our project
is to provide adequate control for declassification in language-based se-
curity. The main contribution of this article is a novel approach for con-
trolling who can initiate a declassification. Our contributions include a
formal security condition and a sound approach to statically enforcing
this condition. This article complements our earlier work on controlling
where declassification can occur and what can be declassified.

1 Introduction

Before private data is given as input to an application, one would like a guar-
antee that the program is sufficiently trustworthy. The desired guarantee can
be formalized by the noninterference property, which ensures that there is no
danger of undesired information leakage. This is expressed by requiring that the
program’s output to untrusted sinks must be completely independent from any
confidential input. While noninterference constitutes a reliable guarantee about
the flow of information, it is a too restrictive requirement for some domains. For
instance, the output of a password-based authentication mechanism differs for a
given input depending on the stored password, i.e. on a secret. Therefore, such
a mechanism necessarily cannot satisfy the noninterference property.

It is clear that the noninterference property can be relaxed in order to permit
such exceptional information leakage. However, the problem of controlling such
exceptions is not yet satisfactorily solved. To clarify the aims and virtues of pre-
vious approaches, three dimensions of controlling declassification were identified
in [1], namely, what can be declassified, where declassification can occur, and
who can initiate declassification. A recent classification of existing approaches
to controlling declassification [2] shows that we do not yet have an integrated
approach that provides adequate control in all of these dimensions.

In this article, we propose a novel approach to controlling the third dimension
of declassification, i.e. who can initiate declassification. This work complements
our earlier work on controlling the first two dimensions [3]. In addition, we

present prudent principles of declassification that can be used as a sanity check
for new security conditions. Our principles extend and refine the ones proposed
in [2]. The second novel contribution is the security condition WHO that we inte-
grate with our earlier condition WHERE to WHERE&WHO, in order to control
who can initiate which declassifications. We prove that WHERE&WHO satis-
fies all prudent principles of declassification, the novel as well as the established
ones. Interestingly, we could show that, in some cases, it is possible to refine the
security policy such that WHERE&WHO can be enforced by the simpler con-
dition WHERE, which we developed for controlling where declassification can
occur. We also present an approach to statically enforcing WHERE&WHO by
refining the policy and applying a type system for WHERE.

2 A Motivating Example

We consider a program that is used by a video store to control the delivery
of movies to customers. After a customer decides to buy a movie, his payment
data is fetched, and it is forwarded to a bank. The movie is delivered only after
the payment has been confirmed by the bank. Movies can be ordered either via
a web interface or at a vending machine in the store. Regular customers may
become preferred customers, who may obtain a movie also without confirmation
of their payment by the bank. However, this preferred treatment is limited to
orders at the vending machine because the vendor does not have sufficient trust
in the authentication mechanism of the web interface.

The example program is written in a simple imperative language with explicit
I/O-instructions. Execution of an instruction x <- in sets the value of the variable
x to a value read from the input channel in. Execution of x -> out writes the
current value of x to the output channel out . As a convention, names of input
and output channels end with I or O, respectively. Instructions in brackets (like,
e.g., [public:=movie]1) mark assignments that are intended as declassifications.
For now such declassification statements should be read as usual assignments.

if byMachine then % branch on whether purchase at machine
paydatvd <- machineI; % get payment data from vending machine
paydatvd -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if (payOK or isPreferred(paydatvd)) then

[public:=movie]1; % copy movie to public variable
public -> machineO fi % pass movie to machine

else
paydatweb <- webI; % get payment data from web interface
paydatweb -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if payOK then

[public:=movie]2; % copy movie to public variable
public -> webO fi % pass movie to web interface

fi

36

For the store, it is essential that a movie is not leaked accidently. That is, a movie
is a secret that must be protected from the customer until his credentials have
been confirmed. As a movie is a secret, it must be explicitly declassified before
it can be delivered to a customer. A preferred customer can initiate this declas-
sification also without the bank’s confirmation by declaring his special status.
However, exceptions should be limited to purchases at the vending machine. It is
the vendor’s policy that a customer’s input at the web interface cannot initiate a
declassification. While our first example program satisfies this security require-
ment, the following program is vulnerable to attacks via the web interface. The
problem with this program is that the check isPreferred(paydat) can depend on
the input from the web interface, which violates the vendor’s policy.

if byMachine
then paydat <- machineI
else paydat <- webI fi;

paydat -> bankO; % pass payment data to bank
payOK <- bankI; % get confirmation of payment from bank
if (payOK or isPreferred(paydat)) then

[public:=movie]1; % copy movie to public variable
if byMachine

then public -> machineO
else public -> webO fi

fi

The objective of this article is to develop a security condition that adequately
controls who can initiate a declassification. In particular, it should reject vul-
nerable programs like our second example, and it should accept secure programs
like the first example. The subscripts at declassification statements (e.g., 1 and
2 in the first example and 1 in the second example) will be used to specify in a
policy which declassification statements may be initiated by whom.

3 Adequate Control of Declassification

We aim for security conditions that formalize the intuitive notion of secure in-
formation flow on a semantic level and that are suitable points of reference for
a soundness argument of a given syntactic security analysis. However, defining
a security condition that adequately captures the security of information flow
becomes non-trivial if exceptional information release shall be permitted. There
is an inherent trade-off between relaxing information flow control in order to per-
mit declassification and reliably ensuring security by rigorous information flow
control. In the following, we present prudent principles of declassification that
can be used as a sanity check for security conditions. The principles extend and
refine the ones proposed by Sabelfeld and Sands [2]. The principles are presented
in Section 3.1. In Section 3.2, we introduce the model of computation and the
programming language used in the rest of the article. The prudent principles are
formalized and specialized to this setting in Section 3.3.

37

3.1 Prudent Principles of Controlling Declassification

In the following, we use the term noninterference as a place-holder for a security
condition that adequately characterizes information flow security in a setting
without declassification. In order to apply the principles as a sanity check, this
place-holder must be instantiated with a suitable security condition.

Semantic consistency [2] The (in)security of a program is invariant under
semantic-preserving transformations of declassification-free subprograms.

Whether a program is secure depends on its behavior. Semantic consistency
ensures that the classification of a program is not effected by syntactic modifi-
cations that do not change the program’s behavior. This principle is desirable
for security definitions, in general, including ones that permit declassification.

Relaxation Every program that satisfies noninterference also satisfies the given
security condition.

Monotonicity of release [2] Adding further declassifications to a secure pro-
gram cannot render it insecure.

These principle are reasonable, because the whole purpose of introducing declas-
sification is to accept more programs as secure. The principles relaxation and
monotonicity impose a lower bound on the set of programs that are accepted
by security conditions. This distinguishes them from the principles below, which
impose upper bounds on the set of acceptable programs.

Non-occlusion [2] The presence of a declassification operation cannot mask
other covert information leaks.

Non-occlusion is crucial, because it summarizes the goal of controlling declassifi-
cation. However, a bootstrapping problem occurs when formalizing this principle
because such a formalization itself would constitute a characterization of secure
information flow, which would need to be checked for non-occlusion. We intro-
duce further prudent principles that can be formalized in the following.

Noninterference up-to Every program that satisfies the given security condi-
tion also satisfies noninterference if it were executed in an environment that
terminates the program when it is about to perform a declassification.

Persistence For every program that satisfies the given security condition, all
programs that are reachable also satisfy the security condition. If this only
holds for programs that are reached by an execution where the last step is a
declassification, then the given security condition is called weakly persistent.

The principle noninterference up-to ensures that the security condition is not
more permissible than noninterference as long as no declassification occurs. Per-
sistence and weak persistence, both ensure, after a declassification occurred, that
one again obtains the original security guarantee for the resulting configuration.

The fourth principle introduced in [2], conservativity, is subsumed by nonin-
terference up-to and relaxation. Conservativity requires that a security condition
must be equivalent to noninterference for programs without declassification. One

38

direction of the equivalence is implied by relaxation and the other by noninterfer-
ence up-to. Note, however, that noninterference up-to also establishes guarantees
for programs with declassification while conservativity does not.

While the previous principles provide a check of adequacy for security con-
ditions with declassification, in general, the following principle is especially in-
tended to check the adequacy of the control of who can initiate declassification.

Protection A security property complies with protection, if for all programs
satisfying this property, an attacker from whom declassification should be
protected, cannot effect declassification by his behavior.

3.2 Policies, Programs, and a Definition of Noninterference

We capture the intended security guarantees by flow policies:

Definition 1. An MLS policy with exceptions is a triple (D,≤,), where D is
a finite set of security domains, ≤⊆ D×D is a partial order and ⊆ D×D.

The relation ≤ determines, between which domains information may flow nor-
mally. The relation determines, between which domains information may
flow exceptionally, i.e. by declassification. An example is the two-level flow pol-
icy ({low , high}, {(low , high), (low , low), (high, high)},), which permits infor-
mation flow from low to high but not from high to low . Declassification from
high to low is permitted or not depending on whether high low or high 6 low .

We assume a set of programs Com, a set of variables Var and a set of values
Val . A memory assigns values to variables s : Var → Val . A domain assignment
is a function dom : Var → D. It establishes a connection between memories and
a flow policy by assigning a domain to each variable. We say that an observer has
a security domain D if he can see the values of all variables x with dom(x) ≤ D ,
but not of other variables. Hence, a D-observer can distinguish memories, if and
only if they differ in the value of at least one variable x with dom(x) ≤ D .

Definition 2. For a given domain D ∈ D, two memories s and s′ are D-equal,
denoted by s =D s′, if ∀x ∈ Var . (dom(x) ≤ D ⇒ s(x) = s′(x)).

We define the set of configurations Conf as the set of all pairs of a program
C (or of the special symbol ε) and a memory s, denoted by 〈|C, s|〉 or 〈|ε, s|〉,
respectively. The operational semantics are given by a deterministic step relation
_ between configurations. We partition _ into disjoint sub-relations _D1→D2

k

and _O where k ∈ N and D1,D2 ∈ D. A _D1→D2
k -step models the execution

of a declassification instruction with label k, source domain D1, and destination
domain D2. We call such steps declassification steps and _O-steps ordinary steps.

In the following, we assume a flow policy (D,≤,) and domain assignment
dom. As notational convention we denote elements of D by D , of Com by C, of
Var by x and y, of Val by v, of memories by s and t , of Conf by cnf , and of
instruction labels in N by k, all possibly with indices or primes.

39

In Sect. 3.1, we used the term noninterference as a place-holder for a secu-
rity condition that characterizes the absence of unintended information flow in a
setting without declassification. We instantiate this place-holder with the strong
security condition, which was originally introduced in [4] for multi-threaded pro-
grams. This is an established definition of security for which there already exist
variants that permit and control declassification [1, 3]. Strong security is based
on the PER-approach [5], i.e. information flow security is characterized based
on non-reflexive indistinguishability relations on programs. Two programs are
indistinguishable for a D-observer, if they do not reveal information to D , when
started in D-equal memories. As strong security does not permit declassification,
the relation does not occur in the following definition.

Definition 3 (Strong Security for Sequential Programs). A strong D-
bisimulation is a symmetric relation R on programs that satisfies

∀C1, C
′
1. ∀s, s ′, t . ∀C2.

[
(C1 R C ′1 ∧ 〈|C1, s|〉_ 〈|C2, t |〉 ∧ s =D s ′)

⇒ ∃C ′2, t′ : (C2 R C ′2 ∧ 〈|C ′1, s′|〉_ 〈|C ′2, t′|〉 ∧ t =D t′)

]
The relation uD is defined as the union of all strong D-bisimulations. A program
C is strongly secure if C uD C holds for all D ∈ D.

For two programs being strongly D-bisimilar means that individual computation
steps from D-equal memories can be simulated, such that the resulting memories
also are D-equal and the resulting programs also are strongly D-bisimilar.

We instantiate programs and the operational semantics with a simple while
language (WL), augmented with a declassifying assignment. The set Com is
defined by the following grammar.

C ::= skip | x:=Exp | C1;C2 | if B then C1 else C2 fi | while B do C od | [x:=y]k

As further condition we require that no two declassification assignments with the
same instruction label may appear in a given program. That is, an instruction
label uniquely determines the occurrence of a declassification in the program
code. To denote expressions from a language E we use B or Exp. That expression
Exp evaluates to value v in memory s is denoted by 〈|Exp, s|〉 ↓ v. Here, we do not
fully define the language E , but only assume that the evaluation of expressions
is total, atomic, and unambiguous. Moreover, we assume a function vars : E →
P(Var) such that

∀Exp, s, s ′. [(∀x ∈ vars(Exp). s(x) = s ′(x))⇒ ∀v. (〈|Exp, s|〉 ↓ v ⇒ 〈|Exp, s′|〉 ↓ v)]

For instance, vars(Exp) could be the set of variables appearing in Exp.
The instantiation of the step relations is given by the rules in Fig. 1. Most

rules are standard. Exceptions are the rules for declassifying assignments [x:=y]k,
which result in _D1→D2

k steps, if the domains are not ≤-related. Declassifying
assignments with ≤-related domains result in ordinary steps, because the direct
information flow conducted by such instructions intuitively complies with ≤.

For simplicity, we require the right-hand side of declassifying assignments to
be a variable. In Sect. 4.1, we extend WL with statements for input and output.

40

〈|skip, s|〉_O 〈|ε, s|〉
〈|Exp, s|〉 ↓ v

〈|x:=Exp, s|〉_O 〈|ε, [x = v]s|〉

〈|B, s|〉 ↓ v v 6= 0

〈|if B then C1 else C2 fi, s|〉_O 〈|C1, s|〉
〈|B, s|〉 ↓ 0

〈|if B then C1 else C2 fi, s|〉_O 〈|C2, s|〉

〈|B, s|〉 ↓ v v 6= 0

〈|while B do C od, s|〉
_O 〈|C;while B do C od, s|〉

〈|B, s|〉 ↓ 0

〈|while B do C od, s|〉_O 〈|ε, s|〉

D1 = dom(y) D2 = dom(x) D1 6≤ D2

〈|[x:=y]k, s|〉_D1→D2
k 〈|ε, [x = s(y)]s|〉

dom(y) ≤ dom(x)

〈|[x:=y]k, s|〉_O 〈|ε, [x = s(y)]s|〉

〈|C1, s|〉_O 〈|ε, s′|〉
〈|C1;C2, s|〉_O 〈|C2, s

′|〉
〈|C1, s|〉_O 〈|C′1, s′|〉

〈|C1;C2, s|〉_O 〈|C′1;C2, s
′|〉

〈|C1, s|〉_D1→D2
k 〈|ε, s′|〉

〈|C1;C2, s|〉_D1→D2
k 〈|C2, s

′|〉
〈|C1, s|〉_D1→D2

k 〈|C′1, s′|〉
〈|C1;C2, s|〉_D1→D2

k 〈|C′1;C2, s
′|〉

Fig. 1. Operational semantics of WL

3.3 Formalization of the Principles

The purpose of a security condition is to formally characterize which programs
obey a given flow policy. Hence, we can view a security condition as a function
from an MLS-policy and a domain assignment to a set of WL-programs. As
a notational convention, we write PROP instead of PROP((D,≤,), dom) if
(D,≤,) and dom are determined by the context.

We are now ready to formalize all prudent principles from Sect. 3.1 (with the
exception of non-occlusion as explained before, and of the who-specific principle
protection whose formalization is deferred to Sect. 4.1) by meta-properties of
security conditions. To formalize monotonicity and semantic consistency, we
define a context as a program C, where the hole • may occur as an atomic sub-
program. We use C〈C〉 to denote the program that one obtains by replacing
each occurrence of • with C. As suggested in [2], we define semantic equivalence
between programs by u = uhigh , where uhigh is the strong high-bisimulation for
the single-domain policy ({high}, {(high, high)}, ∅).

Definition 4 (Semantic consistency). A security property PROP is seman-
tically consistent, if C ′ u C and C〈C〉 ∈ PROP imply C〈C ′〉 ∈ PROP for all
commands C,C ′ without declassification instructions and for all contexts C.

Definition 5 (Relaxation). A security property PROP is relaxing, if C is
strongly secure implies C ∈ PROP .

Definition 6 (Monotonicity). A security property PROP complies with mono-
tonicity of release, if
1. C〈x:=y〉∈PROP implies C〈[x:=y]k〉∈PROP for all C, x, y, and k and
2. ⊆ ′ and C∈PROP((D,≤,), dom)

imply C∈PROP((D,≤, ′), dom).

41

The intuition of Definition 6 with respect to declassifying assignments is the
following. If a program C2 is obtained from a given program C1 by replacing
a declassifying assignment with an ordinary assignment and C2 is accepted al-
ready, then C1, (i.e. the same program with additional brackets indicating that
declassification is permissible) should certainly also be accepted.

To formalize noninterference up-to we have to consider executions of pro-
grams under a monitor. Whenever a program is about to execute a declassifi-
cation step _D1→D2

k , the monitor terminates the execution. This is similar to
changing the operational semantics by removing the rule for declassification steps
with the condition D1 6≤ D2, because in the operational semantics an execution
is stopped, if no further transition from the current configuration is possible.

Definition 7 (Noninterference up-to). A security property PROP is non-
interferent up-to, if C ∈ PROP implies that the program C is is strongly secure
if it were executed with a declassification-prohibiting monitor.

Definition 8 (Persistence). A security property PROP is persistent, if C ′ ∈
PROP holds for all C ′ that are reachable from some C ∈ PROP , i.e. if C ∈
PROP and 〈|C, s|〉_∗〈|C ′, s ′|〉 for some C, s , and s ′ implies C ′ ∈ PROP .

A property PROP is weakly persistent, if C ∈ PROP , 〈|C, s|〉_∗cnf , and
cnf _D1→D2

k 〈|C ′, s ′|〉 for some C, s, s ′, cnf , D1, D2, and k implies C ′ ∈ PROP .

The formalizations of the prudent principles in this section will serve as a
sanity check for our new security condition in the next section.

4 Characterization of Security

In this section we define a novel security property to adequately control who
may influence declassification, by his input on a given channel.

4.1 Input and Output
We extend the notions of programs and security with input and output. We
assume two disjunctive sets, a set of input channels I, and a set of output chan-
nels O. Now, the domain assignments assign security domains to channels, too:
dom : (Var ∪ I ∪ O) → D. A D-observer knows the input of channels in with
dom(in) ≤ D and observes the output of channels out with dom(out) ≤ D .
The step relation _ additionally has the disjoint sub-relations _chan,v, where
chan ∈ I ∪O and v ∈ Val . A _in,v-step models the input of the value v on the
channel in ∈ I. A _out,v-step models the output of the value v on the channel
out ∈ O. As convention we denote elements of I by in, of O by out , and of
I ∪ O by chan. We extend WL by atomic programs for input x <- in and for
output Exp -> out . The operational semantics contains the following new rules
in addition to the ones in Fig. 1.

〈|x <- in, s|〉_in,v 〈|ε, [x = v]s|〉
〈|Exp, s|〉 ↓ v

〈|Exp -> out , s|〉_out,v 〈|ε, s|〉

〈|C1, s|〉_chan,v 〈|ε, s′|〉
〈|C1;C2, s|〉_chan,v 〈|C2, s

′|〉
〈|C1, s|〉_chan,v 〈|C ′1, s′|〉

〈|C1;C2, s|〉_chan,v 〈|C ′1;C2, s
′|〉

42

∀C1, C
′
1. ∀s, s ′, t . ∀C2.

(C1 R C′1 ∧ s =D s ′)

⇒

26666666666666666666664

∀chan, v.
»

(〈|C1, s|〉_chan,v 〈|C2, t |〉 ∧ dom(chan) ≤ D)
⇒ ∃C′2, t′. (〈|C′1, s ′|〉_chan,v 〈|C′2, t ′|〉 ∧ C2 R C′2 ∧ t =D t′)

–

∧

26666666666666664

〈|C1, s|〉(_ \(
S

dom(chan)≤D,v _chan,v))〈|C2, t |〉

⇒

266666666666664

(∃C′2, t′. 〈|C′1, s′|〉(_ \(
S

dom(chan)≤D,v _chan,v))〈|C′2, t′|〉)
∧ ∀C′2, t′.2666666664

〈|C′1, s′|〉(_ \(
S

dom(chan)≤D,v _chan,v))〈|C′2, t′|〉

⇒

2666664
C2 R C′2

∧

26664t =D t′ ∨

∃D1,D2 ∈ D. ∃k ∈ N.24 〈|C1, s|〉_D1→D2
k 〈|C2, t|〉

∧ D1 D2

∧ D2 ≤ D ∧ s 6=D1 s
′

35
37775

3777775

3777777775

377777777777775

37777777777777775

37777777777777777777775
Fig. 2. Strong Bisimulation Relations with I/O

Unlike the rest of the operational semantics of WL, the input value v in the
annotation of input steps is not deterministic. To account for that, we need to
adapt the definition of a strong D-bisimulation accordingly. We define strong se-
curity as before (see Definition 3), however, now we define strong D-bisimulations
as symmetric relations satisfying the sub-formula in Figure 2 without the box in
dark-gray background. The boxes with light-gray background mark the new ele-
ments of the formula compared to Definition 3. Now, strong D-bisimulations give
different guarantees depending on whether a step is an I/O-step with a D-visible
channel or not. If it is an I/O-step with a D-visible channel (first box with light-
gray background), then the simulating step needs to be an I/O-step on the same
channel and with the same value. However, it is important, that for D-visible
input steps only the step with the same value needs to satisfy the requirements
C2 R C ′2 and t =D t′. This captures the assumption, that a D-observer knows
the input values of D-visible channels. For steps that are not I/O-steps with
D-visible channels, the guarantees are required for all possible step results (last
two boxes with light-gray background). This is necessary, because for input steps
with non-D-visible channels the step result depends on the input value, which
is not known to the observer and which should not be revealed to him.

To specify the input channels that must not effect a declassification step with
a given instruction label, we assign sets of input channels to instruction labels.

Definition 9. A protection labeling is a function prot : N→ P(I).
Now we formalize the principle protection. An attacker cannot effect declas-

sification k in a program by his behavior if the occurrence of a declassification
k is invariant under change of the attacker’s behavior. Hence, for the definition
we fix the behavior of everybody else. Here behavior of everybody else means,
the input provided by channels that are not in prot(k). In the following for each

43

P ⊆ I we define P = I\P . We define the sets Bk of behaviors of channels
that are not in prot(k) as lists of input events (in, v) and no-input events ⊥:
Bk = ((prot(k)×Val) ∪ {⊥})∗. For b ∈ Bk we define →b,k⊆ _∗ inductively by
cnf →b,k cnf , if b has length 0, and cnf 1 →b,k cnf 2, if b consists of the prefix b′
and the last element a, and there is a cnf ′ such that cnf 1 →b′,k cnf ′ and either
a = (in, v) ∧ cnf ′ _in,v cnf 2, or a = ⊥ ∧ cnf ′(_ \(

⋃
in∈prot(k),v

_in,v))cnf 2.
The relation (_ \(

⋃
in∈prot(k),v

_in,v)) contains any step, that is not an input
step of a channel, that may effect declassification k. I.e. a behavior b determines
when an input step of a channel in prot(k) occurs and what value is read. The
inputs of channels in prot(k) are not determined by a b ∈ Bk. As abbreviation
we define _k:=

⋃
D1,D2

_D1→D2
k and _k̄:=_ _k for all k.

Definition 10 (Protection). A security property PROP is protecting, if, given
C ∈ PROP , it holds that

∀k, b ∈ Bk, s, cnf 1, cnf 2, cnf ′1.[(
〈|C, s|〉 →b,k cnf 1 ∧ cnf 1 _k̄ cnf 2

∧ 〈|C, s|〉 →b,k cnf ′1

)
⇒ ¬∃cnf ′2. (cnf ′1 _k cnf ′2)

]
The intuition is, that whether a given k-labeled execution step occurs or not is
independent from the inputs of all channels from which k should be protected.

4.2 The Security Property for Who

First, to ensure that exceptional information flow only can occur by declassifi-
cation steps, we define a supporting security property characterizing control of
where. The property is defined similar to strong security, however, it permits
declassification by declassification steps, if the exceptional flow complies with
 . The property is an adaption of WHERE in [3] to the language with I/O.

Definition 11 (WHERE with I/O). A strong (D,)-bisimulation is a sym-
metric relation R on programs that satisfies the whole formula in Figure 2. The
relation u D is the union of all strong (D,)-bisimulations. A program C has
secure information flow while complying with the restrictions where declassifi-
cation can occur if C u D C holds for all D ∈ D (brief: C is where-secure or
C ∈WHERE((D,≤,), dom)).

Declassification is possible, since strong (D ,)-bisimulations do not always
require the memory states after bisimulation steps to be D-indistinguishable.
However, such exceptions are restricted: they may only occur after declassifica-
tion steps _D1→D2

k , where the declassification target is visible to D (D2 ≤ D),
the flow complies with the exceptional flow relation (D1 D2), and the de-
classified information is D1-visible (s =D1 s ′). The restrictions of WHERE on
exceptional information flow offer the possibility to control who may effect de-
classification by only restricting further the occurrence of declassification steps.

Definition 12. Let P ⊆ I and k ∈ N. A (P , k)-protecting bisimulation is a
symmetric relation R ⊆ Conf×Conf such that for all cnf 1 R cnf ′1 it holds that
– ∀cnf 2. (cnf 1_∗cnf 2 ⇒ ¬∃cnf 3cnf 2 _k cnf 3) or

44

– for all cnf 2 with cnf 1 _ cnf 2 it is
∃cnf ′2. cnf ′1 _ cnf ′2
∧ ∀cnf ′2.

[(cnf 1 _k cnf 2 ∧ cnf ′1 _ cnf ′2)⇒ cnf ′1 _k cnf ′2]
∧ [(cnf 1(_ \(

⋃
in∈P,v _in,v))cnf 2 ∧ cnf ′1 _ cnf ′2)⇒ cnf 2 R cnf ′2]

∧ ∀in ∈ P , v.

 (
cnf 1 _in,v cnf 2

∧ cnf ′1(_ \(
⋃

v′ 6=v _in,v′))cnf ′2

)
⇒ cnf 2 R cnf ′2

Given C, a protection labeling prot : N → P(I), and k, WHOC,prot(k) holds,
iff for all from C reachable programs C ′ there is a (prot(k), k)-protecting bisim-
ulation R such that ∀s. 〈|C ′, s|〉 R 〈|C ′, s|〉. A program C is who-protected if
WHOC,prot(k) holds for all k (brief: C ∈WHO).

Configurations are related by a (prot(k), k)-protecting bisimulation, if there is
no reachable declassification step k, because in this case such a step cannot be
effected by any channel input. Else, if such a step occurs, it has to be simulated
by a step with the same annotation. The results of bisimulation steps also need to
be in the bisimulation relation, except, when the steps are input steps of channels
in prot(k) and have differing values. This exception captures that these channels
may effect declassification. The predicate WHOC,prot(k) initially only requires
configurations with equal memories to be related by a bisimulation. This captures
that there are no restrictions on the influence of initial values of variables on
declassification. Hence, any difference in occurrence of a declassification step k
is not caused by input channels that must not effect declassification.

We define the security property for control of who may effect declassification.

Definition 13 (WHERE&WHO). A program C has secure information flow
while complying with the restrictions where declassification can occur and who
may effect declassification if C is where-secure and who-protected. (brief: C is
where&who-secure or C ∈WHERE&WHO((D,≤,), dom)).

Example 1. We consider the example from Sect. 2 with the two-level flow policy
where high low , a domain assignment dom assigning high to movie and low
to every other variable or channel, and prot(1) = prot(2) = {webI}. We first
consider the first program. The variable movie is only read by the declassifying
assignments. The channel webI either is not read at all, or, if the input of bankI is
fixed, the execution of declassification does not depend on the input from webI.
Hence, the program is where&who-secure. Now we consider the second program.
Consider two configurations, both consisting of the branching instruction with
the branch condition (payOK or isPreferred(paydat)), and of memories, where in
both payOK is 0 and in one isPreferred(paydat) is 1 and in the other 0. These con-
figurations, are not ({webI, 1})-protecting bisimilar. However, their bisimilarity
is required by WHO-protection of 1, when we consider an initial memory that
assigns to byMachine the value 0. Hence, this program is not where&who-secure.
This classification of the two programs is according to our intuition.

The property WHERE&WHO complies with all the principles from Sect. 3.

45

Theorem 1 (Compliance to Principles). WHERE&WHO is
1. semantically consistent.
2. relaxing,
3. monotonic,
4. noninterferent up-to,
5. persistent, and
6. protecting.

5 Enforcing Who Control by a Type System for WHERE

There are some cases, where WHERE is equivalent to WHERE&WHO. These
are not only the trivial cases, but also cases where restrictions on who are im-
posed. We capture these cases by the following theorem.

Theorem 2. Let C be given. Let range() := {D ∈ D|∃D ′ ∈ D. D ′ D}. If
1. C is where-secure and
2. ∀in ∈

⋃
k∈N prot(k). ∀D ∈ range(). ¬

(
dom(in)(≤ ∪)∗D

)
,

then C satisfies WHERE&WHO.

Since WHERE is parameterized with multi-level flow policies, which can be used
to express integrity aspects, and since WHERE already restricts declassification
within this policy, satisfaction of WHERE with a suitable flow policy can ensure
WHERE&WHO. Inspired by this result, given a protection labeling prot , an
MLS-policy (D,≤,), and a domain assign dom, we call prot flow-enforced by
(D,≤,) and dom, whenever the second hypothesis of Theorem 2 is satisfied.
By this theorem, if we have given a policy such that prot is flow-enforced, it just
remains to check that a program is where-secure to check where&who-security.

5.1 Refining Flow Policies

To apply Theorem 2 to a given program and security policy, it might be necessary
to refine the MLS-policy and the domain assignment, in order to capture the
desired integrity aspect.

Definition 14. Given MLS-policies (D1,≤1, 1), (D2,≤2, 2) and domain as-
signments dom1 : (Var ∪ I ∪ O) → D1, dom2 : (Var ∪ I ∪ O) → D2, we call a
function abs : D1 → D2 abstracting, iff
1. abs is surjective,
2. ∀D1,D ′1 ∈ D1. (D1 ≤1 D ′1 ⇒ abs(D1) ≤2 abs(D ′1)),
3. ∀D1,D ′1 ∈ D1. (D1 1 D ′1 ⇒ abs(D1)(2 ∪ ≤2)abs(D ′1)),
4. ∀a ∈ (Var ∪ I ∪ O). dom2(a) = abs(dom1(a)).
We call (D1,≤1, 1) and dom1 a policy refinement of (D2,≤2, 2) and dom2,
iff there is an abstracting function abs : D1 → D2.

In a refinement of a given policy, security domains may be split up and the flow
relations may impose additional restrictions. However, a refinement must not
relax the restrictions on the flow of information between variables and channels.
For our purpose, only flow-enforcing refinements are relevant.

46

Example 2. For instance, we consider the first program in Sect. 2 with the policy
and domain assignment we present for the program in Sect. 4. The security
domain of the channel webI is low and low is in the range of , i.e. prot is
not flow-enforced. However, there is a more restrictive policy, such that prot
is flow-enforced and the program is where-secure: we add a security domain
web, extend the flow relation to ≤′=≤ ∪{(low ,web), (web,web)}, and we assign
web to webI, paydatweb and bankO. The function abs defined by abs(low) = low ,
abs(web) = low , and abs(high) = high is abstracting, i.e. the new MLS-policy
and domain assignment are a policy refinement.

Lemma 1. Let (D1,≤1, 1), dom1 : (Var ∪I∪O)→ D1, (D2,≤2, 2), dom2 :
(Var ∪ I ∪ O) → D2, and prot : N → P(I) be given. If abs : D1 → D2 is
abstracting then
1. ∀D2. ∀s, s ′. [(∀D1 ∈ D1. (abs(D1) ≤2 D2 ⇒ s =D1,1 s ′))⇔ s =D2,2 s ′], and
2. ∀D2. ∀C,C ′.

[
(∀D1 ∈ D1. (abs(D1) ≤2 D2 ⇒ C u 1

D1
C ′))⇒ C u 2

D2
C ′
]
,

where =D1,1 is the D1-equality with respect to ≤1 and dom1 for all D1 ∈ D1, and
=D2,2 is the D2-equality with respect to ≤2 and dom2 for all D2 ∈ D2.

Theorem 3. Let C, (D2,≤2, 2), dom2 and prot be given. If there is a refine-
ment (D1,≤1, 1) and dom1 of (D2,≤2, 2) and dom2 such that
– C ∈WHERE((D1,≤1, 1), dom1) and
– prot is flow-enforced by (D1,≤1, 1) and dom1,

then C ∈WHERE&WHO((D2,≤2, 2), dom2).

Theorem 3 shows, that even if policies are not beforehand designed to flow-
enforce, flow-enforced protection labelings can be exploited.

5.2 Static Enforcement of WHERE&WHO

We propose an enforcement mechanism for WHERE&WHO in two steps. The
first step is to find a refinement of the given flow policy and domain assignment
such that prot is flow-enforced. The second step is to apply a type system en-
forcing WHERE with respect to the policy refinement, and to apply Theorem 3.

To find a suitable refinement for a given policy, we split up security domains
from that information may flow to security domains in the range of into
two security domains, with the intuition, that one has high integrity and one
has low integrity with respect to the input channels. We construct the normal
flow relation such that it relates domains of high integrity with the respective
domains of low integrity, however, not the other way round. We construct the
exceptional flow relation such that it has only security domains of high integrity
as source. To input channels, from that declassification should be protected,
we assign security domains of low integrity. To determine for each variable and
output channel, whether it needs to be assigned to the respective domain of low
or high integrity, a type inference based on the type system has to be pursued,
which is out of the scope of this paper. The type system to enforce WHERE is
identical to the one of [3]. A program C is typable, which we denote by ` C, if
` C can be derived by the rules in Fig. 3.

47

∀x ∈ vars(Exp). dom(x) ≤ D

` Exp : D ` skip
` Exp : D D ≤ dom(x)

` x:=Exp

dom(y) dom(x)

` [x:=y]k

` C1 ` C2

` C1 ; C2

` B : low ` C
` while B do C od

` C1 ` C2 ` B : D ∀D ′ 6≥ D : C1 u D′ C2

` if B then C1 else C2 fi

dom(in) ≤ dom(x)

` x <- in

` Exp : D D ≤ dom(out)

` Exp -> out

Fig. 3. Rules of the Security Type System enforcing WHERE

Theorem 4 (Soundness of Security Type System). Let ` C.
1. C is where-secure.
2. If prot is flow-enforced by (D,≤,) and dom then C is where&who-secure.

Note that flow-enforced is a property of just the MLS policy, the domain as-
signment, and the protection labeling, that can be checked by checking whether
security domains are related by the transitive closure of ≤ and .

The rule for conditional branches contains a semantic side condition (∀D ′ 6≥
D : C1 u D′ C2). To be able to fully automatize the analysis, we additionally need
a syntactic approximation of this side condition. A simple solution is to require
` B : low . Examples for less restrictive approaches to syntactic approximations
for similar side conditions can be found in [1, 6, 3].

6 Related Work
The development of adequate control for noninterference-like conditions is an
active research area. In the following discussion, we focus on related work that
targets the control of who can initiate declassification. For other dimensions of
declassification, we refer to the overview on declassification in [2].

Approaches, based on robustness [7–9, 8] permit any information to leak, as
long as the leak appears for all possible behaviors of attackers. Hence, robust
declassification does not comply to noninterference up-to. Possible behaviors of
an attacker are explicitly defined as programs with limited capability to write
[8]. Different to WHERE&WHO, robust declassification does not differentiate
which channels may influence which declassifications.

A different kind of control of who can be conducted on the basis of au-
thorization. The decentralized label model [10] explicitly defines the flow policy
using ownership labels, that state which principal permits reading to which other
principals for each information. Here, declassification is restricted in that each
principal may only relax the requirements imposed by his label. Abstract nonin-
terference [11] is also claimed to control the dimension who. However, here who
is not used in the sense of who may influence, but in the sense of attackers with
different observational capabilities.

Our prudent principles of declassification extend and, in some cases, refine
the ones in [2]. Interestingly, the conjunction of noninterference up-to and weak
persistence has similarities to noninterference unless in [12].

48

7 Conclusion

We presented a novel approach to controlling who can initiate declassification.
Our security condition WHO permits to control who can effect a given declas-
sification in a program. We integrated WHO with the previously defined con-
dition WHERE, which controls where in the program and where in the flow
policy declassification may occur. We argued for the adequacy of the combined
condition WHERE&WHO with the help of prudent principles of controlling de-
classification. We showed that WHERE&WHO can be reduced to WHERE for
some flow policies. Based on this result, we developed a technique for enforcing
WHERE&WHO by, firstly, refining a given flow policy and, secondly, applying
an existing type system for WHERE.

Acknowledgments. We thank the anonymous reviewers for their suggestions. This
work was funded by the DFG in the Computer Science Action Program and by the
Information Society Technologies program of the European Commission, Future and
Emerging Technologies under the IST-2005-015905 MOBIUS project. This article re-
flects only the authors’ views, and the Commission, the DFG, and the authors are not
liable for any use that may be made of the information contained therein.

References
1. Mantel, H., Sands, D.: Controlled Declassification based on Intransitive Noninter-

ference. In: APLAS 2004. Volume 3303 of LNCS., Springer (2004) 129–145
2. Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: Proc. of

the 18th IEEE Computer Security Foundations Workshop, IEEE (2005) 255–269
3. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in

Language-Based Security. In: ESOP 2007. Volume 4421 of LNCS., Springer (2007)
141–156

4. Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-threaded Pro-
grams. In: Proc. of the 13th IEEE Computer Security Foundations Workshop,
IEEE (2000) 200–215

5. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential
Programs. In: ESOP 1999. Volume 1576 of LNCS., Springer (1999) 50–59

6. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. International Journal of Information Security (IJIS)
6(2–3) (2007) 107–131

7. Zdancewic, S., Myers, A.: Robust declassification. In: Proc. of IEEE Computer
Security Foundations Workshop, IEEE (2001) 15–26

8. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing Robust Declassification and
Qualified Robustness. Journal of Computer Security 14 (2006) 157 – 196

9. Chong, S., Myers, A.C.: Decentralized robustness. In: Proc. of the 19th IEEE
workshop on Computer Security Foundations, IEEE (2006) 242–256

10. Myers, A.C., Liskov, B.: Protecting Privacy using the Decentralized Label Model.
ACM Trans. Softw. Eng. Methodol. 9(4) (2000) 410–442

11. Mastroeni, I.: On the role of abstract non-interference in language-based security.
In: APLAS 2005. Volume 3780 of LNCS., Springer (2005) 418–433

12. Goguen, J.A., Meseguer, J.: Unwinding and Inference Control. In: Proceedings of
the IEEE Symposium on Security and Privacy, IEEE (1984) 75–86

49

