
Side Channel Finder
(Version 1.0)
Technical Report TUD-CS-2010-0155
October 2010

Alexander Lux,
Heiko Mantel,
Matthias Perner,
Artem Starostin

Modeling and Analysis
of Information Systems

Contents

1 Introduction 3

2 Target Language 4
2.1 Syntax . 4
2.2 Semantics . 6

3 Security Policy 7
3.1 Policy Language . 7
3.2 Designing a Policy . 9

4 Security Type System 10

5 Examples 16
5.1 AES (Implementation in FlexiProvider) . 16
5.2 IDEA (Implementation in FlexiProvider) . 19
5.3 DES (Implementation in GNU classpath) . 23

6 Related Work 26

7 Conclusion 27

References 28

2 Contents

1 Introduction

The security of an information system often depends on a cryptographic mechanism, for in-
stance if the mechanism establishes confidential communication over untrusted networks by
encryption. Hence, the security of cryptographic algorithms is important. However, considering
security on the level of algorithms is not enough because additional aspects of reality become
relevant for security when implementing cryptographic algorithms. Side channel attacks exploit
the fact that an attacker can observe behavior of a cryptographic mechanism that is not modeled
by the cryptographic algorithm. This enables the attacker to infer secrets from the observed be-
havior. Hence, when developing a cryptographic mechanism it is desirable to detect whether its
implementation potentially opens up side channels.

One possibility to launch a side channel attack is to exploit the variance in the running time of
a software implementation of a cryptographic algorithm. In this work we focus on this kind of
side channels. It has been demonstrated that such a vulnerability even can be exploited remotely
over a network [BB05].

We present the Side Channel Finder in the version 1.0 (short SCF 1.0), a tool for the detection
of potential timing channels in Java implementations of cryptographic algorithms. The purpose
of the tool is to support a programmer of an implementation of a cryptographic algorithm in
assessing his code for that it is not susceptible to timing channel attacks. SCF 1.0 lets the
programmer specify which input of an implemented algorithm constitutes a secret that must not
be leaked, especially not through timing channels. SCF 1.0 then analyzes the given program
code by checking whether the control flow potentially depends on this secret input, and, hence,
the time the code consumes while executing. Version 1.0 of the tool can analyze several actual
implementations of cryptographic algorithms in existing cryptographic libraries.

Structure of the Report Section 2 presents the programming language for implementations
which can be analyzed by SCF 1.0. Section 3 describes a policy language for specifying which
are the secrets to be protected. Section 4 elaborates on the syntactic security model that guided
the design of SCF 1.0. Section 5 demonstrates that SCF 1.0 can analyze real world implementa-
tions of cryptographic algorithms. We discuss the related work in Section 6 and summarize our
results in Section 7.

Notation In this paper we only use total functions f : A→ B, no partial functions. In order to
represent partial functions we define the set B⊥ for each set B as B⊥ = {bbc|b ∈ B} ∪ ⊥ and use
such a set as the co-domain of a function: f : A → B⊥. The meaning of f (a1) = ⊥ is that the
partial function that is represented by f is not defined for a1 and the meaning of f (a2) = bbc is
that the partial function represented by f maps a2 to b.

We use the following notation for function updates. Given a function f : X → Y and elements
x ∈ X, y ∈ Y , the function f {x 7→ y} is the function that coincides with f on all values x′ ∈ X
such that x′ , x and that maps x to y.

1. Introduction 3

2 Target Language

The purpose of SCF 1.0 is to detect potential timing channel vulnerabilities in given Java imple-
mentations of cryptographic algorithms. Therefore SCF 1.0 has to cover a subset of Java that
such programs typically use. Below we present JavaSCF, the subset of Java covered by SCF 1.0.

2.1 Syntax

Structure We assume given a set of names Names. The structure of programs into packages,
classes, fields, and methods is as follows. A JavaSCF-program P consists of a finite set of class
declarations ClassDeclP. A class declaration is a quadruple that consists of a class name from
Names that identifies the class, a second class name from Names, which determines a direct
superclass, a finite set of field declarations, and a finite set of method declarations. The class
name is unique within P. Hence, a class declaration uniquely determines a superclass, a set of
field declarations, and a set of method declarations for a class name c.

Types The declarations of methods and fields employ types. The set of types Types is the
smallest set such that int, boolean, long ∈ Types, Names ⊆ Types (for classes as types), and
ty[] ∈ Types for each ty ∈ Types.

Fields and Methods Fields in JavaSCF have a type. A field declaration is a pair of a field
name from Names and a field type from Types. Methods in JavaSCF have a type signature of
their input and output, and a body containing the actual program code. A method declaration
is a quintuple which comprises the following components: (a) a method name from the set
Names, (b) a return type from Types ∪ {void}, (c) a list of parameter types from Types, (d) a list
of parameter names from Names, and (e) a method body which constitutes the actual program
code. The lists of parameter types and the parameter names have equal lengths. The i-th element
of the parameter types list contains the type of the parameter whose name is given at position i
of the parameter names list. The set of all method declarations is MethodDecl.

Program Code Program code consists of two main kinds of elements, namely, statements
and expressions. Expressions are elements that are intended to be evaluated (i.e., to be ascertain
a value) whereas statements are not. However, expressions can be used as statements.

The grammar of the considered language is presented in Figure 1. For each symbol sym that
appears in the grammar we denote by Langsym a sub-language defined by the grammar for that
symbol. We assume given a set of constant expressions Consts, a set of unary operators UnOps,
and a set of binary operators BinOps. A method body is a statement from LangStatement.

Realization in SCF 1.0 In order to generate an AST-representation from actual files contain-
ing Java source code, SCF 1.0 employs the javaparser [Ges10] in the version 1.0.8 on a set of
files specified by the user. Syntactic constructions beyond the target language of SCF 1.0 are
reported when running SCF 1.0. Examples of those include exception throw statements and a
scope for access to a field or a method that is not a name.

4 Section 2. Target Language

Statement ::= Expression;
| if (Expression) { [Statement] } [else { [Statement] }]
| for ([ListOfExpressions]; Expression; [ListOfExpressions])

{ [Statement] }
| while (Expression) { [Statement] }
| return; | return Expression;
| BlockStmt

Expression ::= (Expression) ? Expression : Expression
| VariableDeclarationExpression
| NameExpr = Expression
| UNOP Expression
| Expression BINOP Expression
| (Expression)
| (TYPENAME) Expression
| Expression instanceof TYPENAME
| NameExpr
| CONSTANTEXPR
| METHODNAME([ArgumentList])
| Scope.METHODNAME([ArgumentList])

ListOfExpressions ::= Expression | Expression, ListOfExpressions

BlockStmt ::= Statement | Statement BlockStatement

VariableDeclarationExpr ::= TYPENAME ListOfVariableDeclarator

ListOfVariableDeclarator ::= VariableDeclarator
| VariableDeclarator, ListOfVariableDeclarator

VariableDeclarator ::= VARIABLENAME [= Expression]

NameExpr ::= VARIABLENAME
| VARIABLENAME[Expression]
| FIELDNAME
| FIELDNAME[Expression]
| Scope.FIELDNAME
| Scope.FIELDNAME[Expression]

ArgumentList ::= TYPENAME VARIABLENAME
| TYPENAME VARIABLENAME, ArgumentList

Scope ::= VARIABLENAME | FIELDNAME | TYPENAME

where VARIABLENAME, FIELDNAME, METHODNAME ∈ Names, TYPENAME ∈ Types,
UNOP ∈ UnOps, BINOP ∈ BinOps, and CONSTANTEXPR ∈ Consts.

Figure 1: Grammar for Program Code in the Target Language of SCF 1.0

2.1. Syntax 5

2.2 Semantics

SCF 1.0 detects where the control flow depends on information that is specified as confidential.
Hence, how information is propagated and how control flow is data-dependent are the relevant
aspects of program semantics.

SCF 1.0 respects the following semantic features regarding the propagation of information.
SCF 1.0 handles assignments to local variables, for instance if the value of some expression
exp is assigned to a local variable v (i.e., v = exp) and exp contains confidential information
then SCF 1.0 treats v also as a container of confidential information. SCF 1.0 also respects
assignments to fields of objects on the heap. For instance let us consider an assignment v.f = exp.
Firstly, it moves the value of exp into the field f. Secondly, this assignment also might reveal the
information to which object the variable v is an alias, namely, the object of which the value of the
field changed. Similarly, SCF 1.0 respects assignments to elements of arrays on the heap with
the additional aspect that the index, which might be confidential, influences at which position the
value changes. SCF 1.0 also respects parameter passing, for instance in a method call v.m(exp).
Note that the passing can be by value, if the value of exp is a of primitive type like an integer,
or by reference, if the value of exp is a reference to an object or an array. Thereby SCF 1.0
does not only consider one method, but all methods that possibly could be the target of the
call v.m(exp), taking into account inherited methods and polymorphism. If a method returns a
value, i.e. its body contains an instruction return exp, and the value of exp contains confidential
information, then SCF 1.0 respects that calling this method and using the returned value means
using confidential information.

SCF 1.0 respects the following semantic features about the control flow. A conditional branch-
ing with a condition on a confidential value is considered a potential timing channel, for instance
if (v==0) then {do something} else {do something different}. Similarly, SCF 1.0 considers con-
ditions on a confidential values in for-loops and while-loops. A further cause of branching in the
control-flow that the SCF 1.0 respects are polymorphic method calls. Let us consider again a
method call v.m(exp) where now the reference in v is confidential and might point to objects of
different classes, each of them having its own implementation of the method. The method that
actually is executed depends on the class of the object that v points to.

The coverage of language features is sufficiently extensive to analyze existing implementa-
tions of cryptographic algorithms, as we demonstrate in Section 5.

6 Section 2. Target Language

3 Security Policy

The core purpose of a policy is to specify which input of an implementation of a cryptographic
algorithm constitutes the secret to be protected, e.g. the secret key of an encryption or decryp-
tion algorithm. Moreover, we use policies to provide guidance for the automatic analysis by
specifying further program entities as holding confidential information if the contents of these
entities potentially depend on secrets when executing the program.

Let us consider how input for cryptographic algorithms is realized in Java implementations.
In Java libraries, cryptographic algorithms are implemented in certain methods. Hence, certain
parameters of such methods may be used to pass secret input to cryptographic algorithms and,
therefore, must be specified as secrets. For instance, consider a decryption routine of some
encryption scheme that receives the ciphertext to decrypt and the secret key in the form of arrays
of bytes, and returns the decrypted result in the form of an array of bytes. This routine can be
implemented in a method that has the signature byte[] decrypt(byte[] input, byte[] key). The
input parameter key must not be learned by the attacker and hence needs to be specified as
secret. Furthermore some objects that are passed as parameters to such methods may have fields
that hold secret input for cryptographic algorithms. Hence, these fields need to be specified
as secrets too. Consider, for example, RSA where the decryption method can be realized by a
method that has the signature byte[] decrypt(byte[] ciphertext, RSAPrivateKey key), and where
the class RSAPrivateKey has a field for the public modulus and a second field with the private
decryption exponent. Here, the second field needs to be specified as secret. Note that a field
is only considered not to be secret, if the reference to the object of the field is also not secret.
That is in this example the parameter key is specified not to be secret in order to leave the public
modulus actually public.

To provide guidance of the analysis, a policy for the analysis contains one or more specifi-
cation for each method that is called and one specification for each field that is accessed. Each
field may be specified to contain confidential information. Specifications of methods represent
which of the parameters are used to pass confidential information and whether the value they
return needs to be kept secret. Multiple specification for a method may be provided in order to
make the analysis context sensitive, that is the SCF 1.0 can deal with different security levels for
arguments at different calls to the same method.

3.1 Policy Language

The policy assigns security levels 0 or 1 to fields, method parameters, and method return val-
ues. The level-value 1 represents confidential information and the level-value 0 represents non-
confidential information. Information is only considered not to be confidential if program enti-
ties necessary to access it all have level 0. For instance, the content of a field with level 0 where
the field is a part of an object where the parameter with the reference has level 1 is considered to
be confidential. Letting level 1 represent confidential information means that information stored
in program entities with the level 1 must not influence the running time of the program. On the
other hand, this also means it is safe to let information in such program entities depend on other
information that is confidential.

The security levels of fields are specified class-wise in contrast to object-wise, hence SCF 1.0

3. Security Policy 7

can determine the level statically without having to know the object at runtime. A whole object
can be specified as confidential by specifying the information elements that contain a reference
to it as confidential. The same is true for arrays, where also the content of the array is considered
confidential as long as the references are confidential.

SCF 1.0 does not require to specify the security levels of local variables of methods because
SCF 1.0 infers them automatically from the levels that are specified in the policy.

SCF 1.0 reads a policy in form of an XML-document. Figure 2 presents the grammar for
policies. The specifications for each class are organized in packages (the XML-elements pack-

LevelModel ::= <informationLevelModel>Packages</informationLevelModel>

Packages ::= <package name="[Packagename]">Types</package>
| <package name="[Packagename]">Types</package>Packages

Types ::= <classSignature name="NAME">Members</classSignature>
| <classSignature name="NAME">Members</classSignature>Types

Members ::= <fieldLevel name="NAME">LEVEL</fieldLevel>
| <fieldLevel name="NAME">LEVEL</fieldLevel>Members
| <methodSignature name="NAME([Parameters])">

Method<methodSignature>
| <methodSignature name="NAME([Parameters])">

Method</methodSignature>Members

Method ::= Params
| Params<returnLevel>LEVEL</returnLevel>

Params ::= <parameterLevel name="NAME">LEVEL</parameterLevel>
| <parameterLevel name="NAME">LEVEL</parameterLevel>Params

Parameters ::= PARAMETERTYPE
| PARAMETERTYPE,Parameters

Packagename ::= NAME
| NAME.Packagename

where NAME ∈ Names, PARAMETERTYPE ∈ Types, LEVEL ∈ {0, 1}

Figure 2: Grammar for Policy Definitions

age) similarly to actual classes of Java. Within these package elements the security signatures
(specifications) for the classes are listed, the XML-elements classSignature. Such a security
signature for a class specifies exactly one level for each of its fields and at least one signature

8 Section 3. Security Policy

for each of its method. That is each XML-element classSignature contains one level for each
of the fields of the respective class, where the fields are identified by the name-attributes of the
XML-elements fieldLevel. Each XML-element classSignature also contains at least one signa-
ture for each method of the respective class. The respective method is identified by the method
name and the parameter types in the name-attribute of the XML-element methodSignature. A
method signature needs to provide levels for its parameters which firstly determine with which
levels for arguments the method may be called, and, secondly, which levels are assumed for the
parameters when executing the method. A method signature also needs to provide a level for
the return value if the method is not void. A method signature lists levels for the parameters by
the XML-elements parameterLevel, and, optionally, for the return level with the XML-element
returnLevel.

Concerning the location of policies, an alternative to storing them in a separate file could have
been to integrate them into the source code, for instance as annotations. The advantage of our
approach is that we do not need to change the source code and can process it as it is.

3.2 Designing a Policy

Policies for SCF 1.0 do not have to be written from the scratch. SCF 1.0 can initialize policies
given the respective source files. It generates complete signatures for all classes in these files.
All levels initially are set to 0. The next step is to specify which parameters of the entry method
for the cryptographic algorithm and which fields constitute secret input. Decisions for that need
to be done by the designer of policies based on the meaning of the input by the actual algorithm.

SCF 1.0 also helps to specify further program entities to hold confidential information in
order to guide the analysis. Running the analysis can report two kinds of violations. The first
one is the branching of the control flow in which the branch to be taken depends on confidential
information. These are the potential timing channel vulnerabilities that SCF 1.0 is built to find.
The second kind are violations where the levels of entities between that information is moved
do not match, for instance when a secret parameter is read and stored into a non-confidential
field. In such a case we know that the entity into which information is moved potentially holds
confidential information. Hence it is reasonable to raise its level to 1 and repeat the analysis.

On the whole, although the policy represents more information, the knowledge that a designer
of the policy needs to put into the process of producing a policy only is which entities represent
secret input of the respective cryptographic algorithm.

3.2. Designing a Policy 9

4 Security Type System

In this section we describe how the SCF 1.0 checks security of a given program against a given
policy with respect to timing channels.

Branchings of the control flow, like conditionals, loops, or polymorphic method calls, can lead
to observable variations of the program running time if the branches have different running time.
To detect such potential causes of timing channels SCF 1.0 analyses programs for branching of
the control flow at which the branch taken depends on confidential input. The check is based on
the idea of security type systems for information flow security.

The security type system checks method declarations against security signatures for meth-
ods and fields. The method security signatures and the field security signatures represent the
information that is provided by the security policy from Section 3. That a method declaration
conforms to given method and field security signatures is expressed by type judgments which we
define below in this section. For the security type system signatures are modeled as follows. The
set of security levels is L = {high, low} where high corresponds to 1 in the policy and low to 0. A
local signature is a function ls : Names→ L⊥ that represents levels of the method parameters and
local variables for that the ls is defined. A method signature reflect a methodSignature-element
of a given policy and is a quadruple (c,m, ls, lret), where the class name c and the method name m
identify the method declaration, the local signature ls assigns security levels to the parameters,
and the level lret is the level of the value returned by the methods with this signature. The local
assignment of a method signature is only defined for parameter names because security levels
of variables are intended to be inferred by type inference. We write MS for a list of method
signatures. Field signatures reflects the fieldLevel-elements of a given policy where the class
name of the field is determined by the surrounding classSignature-element. Field signatures
are modeled by a function fs : (Names × Names) → L⊥, where the first parameter represents a
class name and the second a field name.

Properties to Check The type check of a specified method declaration is considered success-
ful if the type judgment for this method declaration can be derived by the type rules. Derivable
judgments of the type system are intended to ensure two aspects of statements and expressions.
Firstly, for assignment statements they ensure that the security levels of source and destination
memory locations are such that no high data will be moved to low-typed locations during pro-
gram execution. Secondly, they ensure that execution would not branch on a value with the high
security level.

In order to provide these main results, derivable judgments determine two further aspects.
Firstly, they determine the security levels of local variables that are relevant for the statements
and expressions in their respective context. That is the security type system is flow sensitive for
local variables. Secondly, for expressions they determine the security levels of the expression
evaluation.

Security Type Judgments and Rules In order to determine these results it is required to
have (a) program code, (b) a class within that the respective expression or statement is checked
(identified by a class name), (c) a list of method security signatures, (d) a field security signature

10 Section 4. Security Type System

(security levels of fields), and (e) a security level against that returned values need to be checked.
We introduce three judgments: one for expressions, one for statements, and one for method

declarations. The judgment for expressions is:

P, c,MS, fs ` exp : ls→ ls′, l

Firstly, the judgment means that within the program P and within the class identified by c the
value of the expression exp does only depend on information lower or equal than l, given the
signatures MS, fs, and ls. Consider for instance the type rule for deriving the judgment for
binary operations:

[BinopExp]

P, c,MS, fs ` exp1 : ls→ ls1, l1
P, c,MS, fs ` exp2 : ls1 → ls2, l2

P, c,MS, fs ` exp1 binop exp2 : ls→ ls2, l′
l′ = max{l1, l2}

Here the composed expression has the highest level of its subexpression. Secondly, the judgment
means that in the expression no branching of control flow with a high condition exists. Consider
for instance the type rule for deriving the judgment for the ternary operator:

[CondExp]

P, c,MS, fs ` exp : ls→ ls′, low
P, c,MS, fs ` exp1 : ls′ → ls′′, l1
P, c,MS, fs ` exp2 : ls′ → ls′′, l2

P, c,MS, fs ` (exp) ? exp1 : exp2 : ls→ ls′′, l′
l′ = max{l1, l2}

Here the expression of the condition is required to have the level low. Thirdly, the judgment
means that when the local signature is ls before the execution of the expression the local signa-
ture is ls after the the execution. Consider for instance one rule for deriving the judgment for
assignment expressions:

[VarAssignExp1]
P, c,MS, fs ` exp : ls→ ls′, l

P, c,MS, fs ` x = exp : ls→ ls′′, l
isPrimitiveType(x) ∨ (ls′(x) = ⊥)
ls′′ = ls′{x 7→ l}

where the predicate isPrimitiveType on variable names is a holds if the variable name is declared
to be of a primitive type, for instance int. Here, after execution of the assignment expression, the
target variable x has the security level of the expression exp. Finally, the judgment means that
when program execution moves data, security levels of source and destination memory locations
are such that no high data will be moved to low-typed locations during program execution. The
rule for deriving the judgment for assignment expressions illustrates this as well.

The judgment for statements is:

P, c,MS, fs, lret ` stm : ls→ ls′

Its meaning is similar to that of the judgment for expressions, except that statements do not have
a value for which level is stated, and that in case the statement returns, the return value has a
level lower or equal to lret.

The judgment for methods is:

P, c,MS, fs ` md : ms

4. Security Type System 11

It means that the method declaration md within the class identified by c and within the program
P complies to the method signature ms, given the set of method signatures MS and the field
signatures fs, i.e. the body statement of the declaration can be typed. A method is typable
against a method signature if its body is typable against a local signature and a return level that
are specified by the method signature:

[MthdDecl]
P, c,MS, fs, lret ` bodyOf (md) : ls→ ls′

P, c,MS, fs ` md : (c, name(md), ls, lret)

In the following presentation of security type rules we omit P, c, MS, fs, and lret from the
judgment for simplicity of presentation. In the rules we use various shorthands that are based on
the structure of programs. The function typeOf : LangScope → Types maps scopes to their static
types. The functions name : MethodDecl→ Names, paraNameSet : MethodDecl→ P(Names),
and paraNameList : MethodDecl → Names∗ are selector functions on method declarations
and map a given method declaration to its method name, its set of parameter names, or its list
of parameter names, respectively. A method call expression does not necessarily determine a
unique method to be executed. By polymorphism the actual method to be executed depends
on the runtime-type of the object of which the method is called. In order to represent possible
call-targets we introduce the following function. The function poly : (Names × Names) →
P(Names × MethodDecl) takes a class name and a method name and returns a set of pairs of
class names and method declarations such that this set represents the methods that are possibly
selected for execution. The rules for method calls where all possible targets need to be checked
use poly.

The type rules usually break down the type check on the components of the respective state-
ment or expression. The type rules for statements are presented in Figure 3. Note that, the
rules for loops and conditionals additionally check that the condition has the security level low
in order to detect potential timing channels. Judgments for some expressions like assignments
have to update the local signature in some cases. Such updates usually are propagated through
the syntactic structure by the rules for statements and the sequential composition in the rule
[BlockStmt] connects the changes. For control structures the correct treatment of updates is a
source for common mistakes, for instance forgetting that what holds after execution of the body
of a loop is relevant for the condition of the loop. In order to avoid such mistakes we take a
conservative approach and the rules [WhileStmt] and [ForStmt] for loops do require that in their
components the local signature is not changed. For a similar reason the rule [IfStmt1] for con-
ditionals requires equal changes in both branches and the rule [IfStmt2] permits no change at all
such that the further statements only need to be considered with respect to one local signature.

The remaining type rules for expressions are presented in Figures 4 and 5. Note that, in the
rules for expressions that change memory, like assignments, variable declarations, and method
calls, it is checked that the data depending on memory locations with the level high is not moved
to memory locations with the level low.

12 Section 4. Security Type System

[BlockStmt]
` stm0 : ls→ ls0 ` stm1 : ls0 → ls1 . . . ` stmn−1 : lsn−1 → lsn−1

` stm0 stm1 . . . stmn−1 : ls→ lsn−1

[ExpStmt]
` exp : ls→ ls′, l

` exp; : ls→ ls′

[ReturnStmt1]
` exp : ls→ ls′, l

` return exp; : ls→ ls′
l ≤ lret [ReturnStmt2]

` return; : ls→ ls

[IfStmt1]
` exp : ls→ ls′, low ` stm1 : ls′ → ls′′ ` stm2 : ls′ → ls′′

` if (exp) {stm1} else {stm2} : ls→ ls′′

[IfStmt2]
` exp : ls→ ls′, low ` stm : ls′ → ls′

` if (exp) {stm} : ls→ ls′

[WhileStmt]
` exp : ls→ ls, low ` stm : ls→ ls

` while (exp) {stm} : ls→ ls

[ForStmt]

` exp : ls→ ls, low ` stm : ls→ ls
` exp0 : ls→ ls, l0 . . . ` expn−1 : lsn−2 → ls, ln−1
` exp′0 : ls→ ls, l′0 . . . ` exp′n′−1 : lsn′−2 → ls, l′n′−1

` for (exp0, . . . ,expn−1; exp; exp′0, . . . ,exp′n′−1) {stm} : ls→ ls

Figure 3: Security Type Rules for Statements

4. Security Type System 13

[ConstExp]
` const : ls→ ls, low

[NameExp1]
` name : ls→ ls, l

ls(name) = blc

[NameExp2]
` name : ls→ ls, l

ls(name) = ⊥

fs(c, name) = blc

[FieldAccExp1]
` scope.f : ls→ ls, l′′

fs(typeOf (scope), f) = blc
ls(scope) = bl′c
l′′ = max{l, l′}

[FieldAccExp2]
` scope.f : ls→ ls, l′′

ls(scope) = ⊥

fs(typeOf (scope), f) = blc
fs(c, scope) = bl′c
l′′ = max{l, l′}

[ArrAccExp1]
` exp : ls→ ls′, l′

` name[exp] : ls→ ls′, l′′
ls(name) = blc
l′′ = max{l, l′}

[ArrAccExp2]
` exp : ls→ ls′, l′

` name[exp] : ls→ ls′, l′′

ls(name) = ⊥

fs(c, name) = blc
l′′ = max{l, l′}

[ArrAccExp3]
` exp : ls→ ls′, l′′

` scope.f [exp] : ls→ ls′, l′′′

fs(typeOf (scope), f) = blc
ls(scope) = bl′c
l′′′ = max{l, l′, l′′}

[ArrAccExp4]
` exp : ls→ ls′, l′′

` scope.f [exp] : ls→ ls′, l′′′

ls(scope) = ⊥

fs(typeOf (scope), f) = blc
fs(c, scope) = bl′c
l′′ = max{l, l′}

[EnclExp]
` exp : ls→ ls′, l

` (exp) : ls→ ls′, l
[CastExp]

` exp : ls→ ls′, l

` (ty)exp : ls→ ls′, l

[UnopExp]
` exp : ls→ ls′, l

` unop exp : ls→ ls′, l

Figure 4: Security Type Rules for Expressions (part 1)

14 Section 4. Security Type System

[VarAssignExp2]
` exp : ls→ ls′, l

` x = exp : ls→ ls′, l
¬isPrimitiveType(x)
ls′(x) = blc

[ArrAssignExp1]
` exp1 : ls→ ls1, l′ ` exp2 : ls1 → ls2, l

` name[exp1] = exp2 : ls→ ls2, l
ls(name) = blc
l′ ≤ l

[ArrAssignExp2]
` exp1 : ls→ ls1, l′ ` exp2 : ls1 → ls2, l

` name[exp1] = exp2 : ls→ ls2, l

ls(name) = ⊥

fs(c, name) = blc
l′ ≤ l

[ArrAssignExp3]
` exp1 : ls→ ls1, l′′ ` exp2 : ls1 → ls2, l′′′

` scope.f [exp1] = exp2 : ls→ ls2, l′′′

fs(typeOf (scope), f) = blc
l′′ ≤ l′′′

ls(scope) = bl′c
l′′′ = max{l, l′}

[ArrAssignExp4]

` exp1 : ls→ ls1, l′′

` exp2 : ls1 → ls2, l′′′

` scope.f [exp1] = exp2 : ls→ ls2, l′′′

ls(name) = ⊥

fs(typeOf (scope), f) = blc
fs(c, name) = bl′c
l′′′ = max{l, l′}

[VarDeclExp]
` VarDecl0 : ls→ ls0, l0 . . . ` VarDecln−1 : lsn−2 → lsn−1ln−1,

` typename VarDecl0, . . . ,VarDecln−1 : ls→ lsn−1, ln−1

[VarDecl1]
` exp : ls→ ls′, l

` x=exp : ls→ ls′′, l
ls′{x 7→ l} = ls′′ [VarDecl2]

` x : ls→ ls, low

[CallExp1]
` exp0 : ls→ ls0, l0 . . . ` expn−1 : lsn−2 → lsn−1, ln−1

` m(exp0, . . . ,expn−1) : ls→ lsn−1, l′ret
SideCond1

where SideCond1 is ∀(c′,md) ∈ poly(c,m).
∃lscalled : paraNameSet(md)→ L. (c′, name(md), lscalled, l′ret) ∈ MS
∧ P, c′,MS, fs ` md : (c′, name(md), lscalled, l′ret)
∧ map(lscalled, paraNameList(md)) = l0 . . . ln−1

[CallExp2]

` scope : ls→ ls, low
` exp0 : ls→ ls0, l0 . . . ` expn−1 : lsn−2 → lsn−1, ln−1

` scope.m(exp0, . . . ,expn−1) : ls→ lsn−1, l′ret
SideCond2

where SideCond2 is ∀(c′,md) ∈ poly(typeOf (scope),m).
∃lscalled : paraNameSet(md)→ L. (c′, name(md), lscalled, l′ret) ∈ MS
∧ P, c′,MS, fs ` md : (c′, name(md), lscalled, l′ret)
∧ map(lscalled, paraNameList(md)) = l0 . . . ln−1

Figure 5: Security Type Rules for Expressions (part 2)

4. Security Type System 15

5 Examples

In this Section we demonstrate how SCF 1.0 can be applied on existing implementations of
cryptographic algorithms. We present three examples that cover three software implementations
of algorithms for encryption or decryption in two different cryptographic libraries.

5.1 AES (Implementation in FlexiProvider)

At first let us consider the encryption standard AES as implemented in the library FlexiProvider
(Version 1.6p7) [Fle10]. The goal of the analysis is to protect the secret key at decryption
(encryption works in the same manner).

Decryption is implemented in the method singleBlockDecrypt(byte[] input, int inOff, byte[]
output, int outOff) of the class Rijndael in the package de.flexiprovider.core.rijndael (see an
excerpt in Figure 6). For executing the decryption itself, an expansion of the symmetric secret
key is used. The already expanded secret key for decryption is stored in the field Ki of type int[].

The first step to analyze the decryption method with SCF 1.0 is creating configuration files
and a policy, as defined in Section 3. SCF 1.0 can do this automatically. Most notably, it au-
tomatically initializes the policy with all relevant field- and method-signatures, where all levels
are set to 0 (low). The command for executing the initialization is

java u s e r i n t e r f a c e s . SimpleCommandLine i n i t "$ANALYZEPATH" "AES" \
" de . f l e x i p r o v i d e r . core . r i j n d a e l " " R i j ndae l " \
" s ing leB lockDecryp t (byte [] , i n t , byte [] , i n t) " \
"$SRCPATH/ de / f l e x i p r o v i d e r / core / r i j n d a e l / R i j ndae l . java " \
"$SRCPATH/ de / f l e x i p r o v i d e r /common/ u t i l / BigEndianConversions . java

where $ANALYZEPATH is the directory for the analysis configuration and result files, whereas
$SRCPATH is the path to the source files of FlexiProvider. The argument init commands
SCF 1.0 to initialize the files, the argument "AES" provides the prefix for configuration files
and result files, the following three arguments specify the method to be analyzed, and the last
two arguments specify the source files that contain relevant code. The command generates three
files: (a) a policy file, AES.level, (b) a file containing the paths to the source files that contain
relevant code, AES.program, and (c) a file to configure the whole analysis, AES.analysis. The
last file stores the method to be analyzed, paths to the other two files, and the names of the output
files AES.log and AES.report.

The next step is to specify the secret input as well as the fields or method parameters that
potentially contain confidential information. The field Ki holds the expanded secret key, hence,
we specify the field Ki to contain a secret, i.e., we modify the file AES.level such that Ki gets
assigned the level 1. For completeness, we also associate the field K with the level 1, which
actually is not used by the decryption routine but which contains the expansion of the secret
key for encryption. We also associate the parameter output of the method singleBlockDecrypt
with the level 1, because it is used to store the results of decryption and, thus, it will contain
information that depends on the secret key. Note, that leaving the level of output at 0 would not
result in a successful analysis because SCF 1.0 would report a violation.

16 Section 5. Examples

protected void s ing leB lockDecryp t (byte [] input , i n t i nOf f , byte []
output , i n t outOf f) {

i n t i , j ;
i n t d0 , d1 , d2 , d3 , d4 , d5 , d6 , d7 ;
i n t a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ;
[. . .]
i f (b lockSize == 8) {

/ / conver t i npu t bytes to i n t s
d0 = BigEndianConversions . OS2IP (input , i n O f f) ;
[. . .]
/ / XOR keys and data
d0 ^= Ki [0] ;
[. . .]
d7 ^= Ki [7] ;

/ / (n − 1) t rans fo rma t i on rounds
for (j = 1 ; j < numRounds ; j ++) {

i = j ∗ blockSize ;
a0 = T0i [(d0>>>24) & 0 x f f] ^ T1i [(d7>>16) & 0 x f f]
^ T2i [(d5>>8) & 0 x f f] ^ T3i [d4 & 0 x f f] ^ Ki [i] ;
[. . .]
a7 = T0i [(d7>>>24) & 0 x f f] ^ T1i [(d6>>16) & 0 x f f]
^ T2i [(d4>>8) & 0 x f f] ^ T3i [d3 & 0 x f f] ^ Ki [i + 7] ;
[. . .]
d7 = a7 ;

}

/ / conver t i n t s to output bytes p lus l a s t
t r ans fo rma t i on round

i = numRounds ∗ blockSize ;
output [ou tOf f ++] = (byte) (Si [(d0>>>24) & 0 x f f]

^ (Ki [i] >>>24)) ;
[. . .]

}
}

Figure 6: Excerpt of the AES decryption method in FlexiProvider [Fle10]

5.1. AES (Implementation in FlexiProvider) 17

Figure 7 shows an excerpt of the resulting policy.

<?xml version=" 1.0 " encoding="UTF−8" standalone=" no " ?>
< in format ionLeve lModel>

<package name=" de . f l e x i p r o v i d e r . common. u t i l ">
<c lassS igna tu re name=" BigEndianConversions ">

[. . .]
< / c lassS igna tu re>

< / package>
<package name=" de . f l e x i p r o v i d e r . core . r i j n d a e l ">

<c lassS igna tu re name=" R i j ndae l ">
[. . .]
< f i e l d L e v e l name=" T2i ">0< / f i e l d L e v e l >
< f i e l d L e v e l name=" Ki ">1< / f i e l d L e v e l >
< f i e l d L e v e l name=" b lockSize ">0< / f i e l d L e v e l >
[. . .]
<methodSignature name=" s ing leB lockDecryp t (byte [] , � i n t , �

byte [] , � i n t) ">
<parameterLevel name=" i npu t ">0< / parameterLevel>
<parameterLevel name=" i n O f f ">0< / parameterLevel>
<parameterLevel name=" output ">1< / parameterLevel>
<parameterLevel name=" ou tOf f ">0< / parameterLevel>

< / methodSignature>
[. . .]

< / c lassS igna tu re>
< / package>

< / in format ionLeve lModel>

Figure 7: Excerpt of the policy for the AES decryption method

Finally, we actually run the analysis by issuing the following command where we just supply
the configuration file for the analysis:

java u s e r i n t e r f a c e s . SimpleCommandLine
analyze "$ANALYZEPATH/AES. ana lys i s "

The resulting file AES.report contains:

===Ana lys is Report===

Ana lys is completed : t r ue

==Overloading Warnings==

18 Section 5. Examples

de . f l e x i p r o v i d e r .common. u t i l . BigEndianConversions . I2OSP (long) has
the same name and amount o f parameters l i k e an al ready e x i s t i n g
method

de . f l e x i p r o v i d e r .common. u t i l . BigEndianConversions . I2OSP (long , byte
[] , i n t) has the same name and amount o f parameters l i k e an
al ready e x i s t i n g method

==Assignment V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Undefined l e v e l V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Branching V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Branchings wi th undef ined l e v e l ==
Amount : 0
V i o l a t i o n s :
== D e f i n i t i o n s not found==
Amount : 0
V i o l a t i o n s :

From that we, first of all, obtain that the analysis has run through (Analysis completed: true).
Secondly, we obtain a warning about overloading, which SCF 1.0 supports only partially based
on the number of arguments. However, the methods warned about actually are never called
within the analyzed method, hence it is not relevant for this analysis. Finally, we obtain that no
violations have been found, that is neither a branching with a branch condition that depends on
secrets, nor that we have specified inconsistent security levels.

5.2 IDEA (Implementation in FlexiProvider)

Now let us consider the encryption scheme IDEA as implemented in the library FlexiProvider.
The goal of the analysis is to protect the secret key at encryption.

Encryption is implemented in the method singleBlockEncrypt(byte[] input, int inOff, byte[]
output, int outOff) of the class IDEA in the package de.flexiprovider.core.idea (see an excerpt in
Figure 8). Each round of IDEA encryption uses different bits of the secret key. These round keys
are scheduled before the actual encryption. The scheduled secret key for encryption is stored in
the field encr of type int[].

As the first step we initialize the configuration files and the policy with a command:

java u s e r i n t e r f a c e s . SimpleCommandLine i n i t "$ANALYZEPATH" " IDEA" \
" de . f l e x i p r o v i d e r . core . idea " " IDEA" \
" s ing leB lockEncryp t (byte [] , i n t , byte [] , i n t) " \
"$SRCPATH/ de / f l e x i p r o v i d e r / core / idea / IDEA . java "

5.2. IDEA (Implementation in FlexiProvider) 19

protected void s ing leB lockEncryp t (byte [] input , i n t i nOf f ,
byte [] output , i n t outOf f) {

encryptDecrypt (encr , input , i nOf f , output , ou tOf f) ;
}
[. . .]
private void encryptDecrypt (i n t [] key , byte [] in , i n t i n _ o f f s e t ,

byte [] out , i n t o u t _ o f f s e t) {
[. . .]
i n t x0 = i n [i n _ o f f s e t ++] << 8;
x0 |= i n [i n _ o f f s e t ++] & 0 x f f ;
[. . .]
for (i n t i = 0 ; i < rounds ; ++ i) {

x0 = mulMod16 (x0 , key [k + +]) ;
x1 += key [k ++] ;
x2 += key [k ++] ;
x3 = mulMod16 (x3 , key [k + +]) ;
[. . .]

}
[. . .]
out [o u t _ o f f s e t ++] = (byte) (x0 >>> 8) ;
out [o u t _ o f f s e t ++] = (byte) x0 ;
[. . .]

}
[. . .]
private i n t mulMod16 (i n t a , i n t b) {

i n t p ;
a &= mulMask ;
b &= mulMask ;

i f (a == 0) {
a = mulModulus − b ;

} else i f (b == 0) {
a = mulModulus − a ;

} else {
p = a ∗ b ;
b = p & mulMask ;
a = p >>> 16;
a = b − a + (b < a ? 1 : 0) ;

}

return a & mulMask ;
}

Figure 8: Excerpt of the IDEA encryption method in FlexiProvider [Fle10]

20 Section 5. Examples

where $ANALYZEPATH is the directory for the analysis configuration files and result files, and
$SRCPATH is the path to the source files of FlexiProvider.

The next step is again to specify the security levels. We modify the file IDEA.level such
that the field encr for the scheduled encryption key is set to level 1 (and similarly the scheduled
decryption key decr for completeness). Running the analysis with this policy reveals that method
parameters at several points in the program are instantiated with confidential data or are used to
store confidential date. Hence we also set these parameters to the level 1, that is the parameters
input and output of singleBlockEncrypt, the parameters key, in, and out of encryptDecrypt, the
parameters a and b of mulMod16, and the return value of mulMod16. Figure 9 shows an excerpt
of the resulting policy.

Finally, we actually run the analysis by issuing the following command, where we supply the
configuration file for the analysis:

java u s e r i n t e r f a c e s . SimpleCommandLine
analyze "$ANALYZEPATH/ IDEA . ana lys i s "

The resulting file IDEA.report contains:

===Ana lys is Report===

Ana lys is completed : t r ue

==Assignment V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Undefined l e v e l V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Branching V i o l a t i o n s ==
Amount : 3
V i o l a t i o n s :
de . f l e x i p r o v i d e r . core . idea . IDEA . mulMod16 (i n t , i n t) [(1 , 1)] i n l i n e

407;
Branching wi th non p u b l i c c o n d i t i o n : a == 0

de . f l e x i p r o v i d e r . core . idea . IDEA . mulMod16 (i n t , i n t) [(1 , 1)] i n l i n e
409;

Branching wi th non p u b l i c c o n d i t i o n : b == 0
de . f l e x i p r o v i d e r . core . idea . IDEA . mulMod16 (i n t , i n t) [(1 , 1)] i n l i n e

422;
Branching wi th non p u b l i c c o n d i t i o n : b < a

==Branchings wi th undef ined l e v e l ==
Amount : 0
V i o l a t i o n s :
== D e f i n i t i o n s not found==
Amount : 0
V i o l a t i o n s :

5.2. IDEA (Implementation in FlexiProvider) 21

<?xml version=" 1.0 " encoding="UTF−8" standalone=" no " ?>
< in format ionLeve lModel>

<package name=" de . f l e x i p r o v i d e r . core . idea ">
<c lassS igna tu re name=" IDEA">

< f i e l d L e v e l name=" encr ">1< / f i e l d L e v e l >
< f i e l d L e v e l name=" mulModulus ">0< / f i e l d L e v e l >
< f i e l d L e v e l name=" decr ">1< / f i e l d L e v e l >
< f i e l d L e v e l name=" b lockSize ">0< / f i e l d L e v e l >
< f i e l d L e v e l name=" keySize ">0< / f i e l d L e v e l >
[. . .]
<methodSignature name=" s ing leB lockEncryp t (byte [] , � i n t , �

byte [] , � i n t) ">
<parameterLevel name=" i npu t ">1< / parameterLevel>
<parameterLevel name=" i n O f f ">0< / parameterLevel>
<parameterLevel name=" output ">1< / parameterLevel>
<parameterLevel name=" ou tOf f ">0< / parameterLevel>

< / methodSignature>
[. . .]
<methodSignature name="mulMod16 (i n t , � i n t) ">

<parameterLevel name=" a ">1< / parameterLevel>
<parameterLevel name=" b ">1< / parameterLevel>
< re tu rnLeve l >1< / re tu rnLeve l >

< / methodSignature>
[. . .]
<methodSignature name=" encryptDecrypt (i n t [] , �byte [] , �

i n t , �byte [] , � i n t) ">
<parameterLevel name=" key ">1< / parameterLevel>
<parameterLevel name=" i n ">1< / parameterLevel>
<parameterLevel name=" i n _ o f f s e t ">0< / parameterLevel>
<parameterLevel name=" out ">1< / parameterLevel>
<parameterLevel name=" o u t _ o f f s e t ">0< / parameterLevel

>
< / methodSignature>
[. . .]

< / c lassS igna tu re>
< / package>

< / in format ionLeve lModel>

Figure 9: Excerpt of the policy for the IDEA encryption method

22 Section 5. Examples

From this report we, firstly, obtain that the analysis has run through (Analysis completed: true).
Next, we see that there are branches with a condition that depends on confidential data. Inspect-
ing the findings in the source (Figure 8) of the method mulMod16 reveal that there actually are
certain values of the parameters that result in a special treatment, which is realized by branching
on their values. The finding constitutes a known timing channel vulnerability for implementa-
tions of IDEA [KSWH00].

5.3 DES (Implementation in GNU classpath)

As the third example let us consider an implementation in a second Java library that contains im-
plementations of cryptographic algorithms, namely the GNU Classpath (version 0.98) [GNU09],
which aims at providing free core class libraries for Java. The goal of the analysis is to protect
the secret key at DES-encryption or -decryption.

The encryption is implemented in the method desFunc(byte[] in, int i, byte[] out, int o, int[]
key) of the class DES in the package gnu.javax.crypto.cipher (see an excerpt in Figure 10). The
secret key (also already expanded) is passed as the parameter key.

Note that here we analyze the actual core of the encryption scheme. The class DES contains
wrappers encrypt and decrypt which essentially pass either the expanded key for encryption or
the expanded key for decryption. These two wrapper methods cannot be analyzed by SCF 1.0,
because they apply a method call on a casted object, which is out of scope of SCF 1.0 (see
Section 2). However, the actual routine is implemented in desFunc, which can be analyzed
well.

The first step is again automatic initialization:

java u s e r i n t e r f a c e s . SimpleCommandLine i n i t "$ANALYZEPATH" "DES" \
" gnu . javax . c ryp to . c ipher " "DES" \
" desFunc (byte [] , i n t , byte [] , i n t , byte []) " \
"$SRCPATH/ gnu / javax / c ryp to / c ipher /DES. java "

where $ANALYZEPATH is the directory for the analysis configuration files and result files,
$SRCPATH is the path to the source files of GNU Classpath.

We specify level 1 for the secret method parameter key, which holds the secret to be protected,
and the method parameter out, in which the results are stored. See Figure 9 for an excerpt of the
resulting policy. Now we run the analysis by issuing the following command, where we supply
the configuration file for the analysis:

java u s e r i n t e r f a c e s . SimpleCommandLine
analyze "$ANALYZEPATH/DES. ana lys i s "

The resulting file DES.report contains:

===Ana lys is Report===

Ana lys is completed : t r ue

==Assignment V i o l a t i o n s ==
Amount : 0

5.3. DES (Implementation in GNU classpath) 23

private s t a t i c void desFunc (byte [] in , i n t i , byte [] out ,
i n t o , i n t [] key)

{
i n t r i g h t , l e f t , work ;
/ / Load .
l e f t = (i n [i ++] & 0 x f f) << 24

| (i n [i ++] & 0 x f f) << 16
| (i n [i ++] & 0 x f f) << 8
| i n [i ++] & 0 x f f ;

[. . .]
/ / I n i t i a l permutat ion .
work = ((l e f t >>> 4) ^ r i g h t) & 0x0F0F0F0F ;
l e f t ^= work << 4;
r i g h t ^= work ;

[. . .]

r i g h t = ((r i g h t << 1) | ((r i g h t >>> 31) & 1)) & 0xFFFFFFFF ;
work = (l e f t ^ r i g h t) & 0xAAAAAAAA;
l e f t ^= work ;
r i g h t ^= work ;
l e f t = ((l e f t << 1) | ((l e f t >>> 31) & 1)) & 0xFFFFFFFF ;

i n t k = 0 , t ;
for (i n t round = 0; round < 8; round ++)

{
work = r i g h t >>> 4 | r i g h t << 28;
work ^= key [k ++] ;
t = SP7 [work & 0x3F] ;
[. . .]
l e f t ^= t ;

[. . .]
}

[. . .]

out [o++] = (byte) (r i g h t >>> 24) ;
[. . .]
out [o] = (byte) l e f t ;

}

Figure 10: Excerpt of the DES encryption- and decryption method in GNU Classpath [GNU09]

24 Section 5. Examples

<?xml version=" 1.0 " encoding="UTF−8" standalone=" no " ?>
< in format ionLeve lModel>

<package name=" gnu . javax . c ryp to . c ipher ">
<c lassS igna tu re name="DES">

[. . .]
<methodSignature name=" desFunc (byte [] , � i n t , �byte [] , � i n t

, � i n t []) ">
<parameterLevel name=" i n ">0< / parameterLevel>
<parameterLevel name=" i ">0< / parameterLevel>
<parameterLevel name=" out ">1< / parameterLevel>
<parameterLevel name=" o ">0< / parameterLevel>
<parameterLevel name=" key ">1< / parameterLevel>

< / methodSignature>
[. . .]

< / c lassS igna tu re>
< / package>

< / in format ionLeve lModel>

Figure 11: Excerpt of the policy for the DES encryption- and decryption method

V i o l a t i o n s :
==Undefined l e v e l V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Branching V i o l a t i o n s ==
Amount : 0
V i o l a t i o n s :
==Branchings wi th undef ined l e v e l ==
Amount : 0
V i o l a t i o n s :
== D e f i n i t i o n s not found==
Amount : 0
V i o l a t i o n s :

This means SCF 1.0 has completed the analysis successfully on this third implementation and
did not find any violations.

5.3. DES (Implementation in GNU classpath) 25

6 Related Work

Timing channel attacks on cryptographic systems have been explored since 15 years [Koc96].
They have been practically demonstrated [BB05], optimized [Sch05], and evaluated [SMY09].

We are not aware of an existing tool that automatically analyzes programs implemented in
Java source code for potential timing channels. However, there are implementations of de-
tection and transformation mechanisms for analyzing implementations in other programming
languages. In [Aga01] an approach of automatically transforming out timing leaks by cross-
copying [Aga00] is evaluated by realizing it for subset of Java bytecode without objects. The
paper [MPSW05] suggests and realizes transforming out timing leaks in C programs (without
function calls and pointers) by encoding conditional branches into assignments of expressions.
In [CVBS09] a transformation at the compiler back-end for x86 code is suggested based on an
exploration of the actual timing behavior of x86-instructions.

The analysis mechanism of SCF 1.0 is based on security type systems for information flow
control [VSI96], and the security model of SCF 1.0 on the noninterference-like information flow
properties that such type systems enforce. JIF [JIF08] (introduced in [Mye99]) provides infor-
mation flow security by a security type system for an extended version of Java. In comparison,
SCF 1.0 is applicable to unmodified Java programs.

The language-based information flow community has addressed the issue of timing channels
also in settings where the attacker cannot observe the time itself [SM03]. When considering
multi-threaded programs, the running time of a thread may influence the decisions of a sched-
uler, which can resolve non-determinism that is caused by race conditions such that the decision
becomes visible to an attacker by different observable values. Several approaches to define se-
curity properties that adequately capture this problem exist: by imposing requirements about
the scheduler-visible timing-behavior of threads based on a strong bisimulation (strong security
condition) [SS00], by forbidding certain non-determinism in programs [ZM03, HWS06], or by
using schedulers with a special interface [RS06]. A novel approach tries to relax the strict re-
quirements of the strong security condition by providing and exploiting a precise specification of
realistic schedulers [MS10]. Especially the first approach is interesting if considering attackers
that can observe the time directly, because it does not address the effects but the cause (tim-
ing) itself. Already [SS00] provides a security type system for transforming out timing leaks
by cross-copying of branches. A more advanced transformation for the same security condition
based on unification of branches is provided in [KM07]. The strong security condition itself also
has been extended with declassification [MR07, LM09].

26 Section 6. Related Work

7 Conclusion

We have presented SCF 1.0, a tool that can detect potential timing channel vulnerabilities in
implementations of cryptographic algorithms in the Java source language. SCF 1.0 covers a
non-trivial subset of Java (see Section 2) including objects, arrays, and methods. These concepts
are commonly used in Java implementations of cryptographic algorithms, for instance in the
examples we considered (see Section 5).

We also presented the policy language (see Section 3) which SCF 1.0 reads and that deter-
mines the secrets that must not be accessible through timing channels. The expressiveness of
the policy language reflects the programming language that is covered by SCF 1.0, i.e. it sup-
ports security signatures for fields and methods. SCF 1.0 helps the designer of such policies by
automatic generation of policies with default specifications.

SCF 1.0 is designed to analyze programs for branching of the control flow at which the branch
taken depends on confidential input. We carefully crafted a security type system (see Section 4)
which automatically checks whether this is the case for a given Java program.

The examples shown (see Section 5) that SCF 1.0 is sufficiently mature to analyze several
actual implementations of cryptographic algorithms in existing cryptographic libraries.

Acknowledgments. We thank Markus Aderhold for helpful comments and Mohamed El Yousfi
for helpful discussion. This work was supported by CASED (www.cased.de).

7. Conclusion 27

References

[Aga00] J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM Sympo-
sium on Principles of Programming Languages (POPL), pages 40–53, 2000.

[Aga01] J. Agat. Type Based Techniques for Covert Channel Elimination and Register Allo-
cation. PhD thesis, Chalmers University of Technology, 2001.

[BB05] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Net-
works, 48(5):701–716, 2005.

[CVBS09] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical Mit-
igations for Timing-Based Side-Channel Attacks on Modern x86 Processors. In
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy (S&P,
pages 45–60, Washington, DC, USA, 2009. IEEE Computer Society.

[Fle10] FlexiProvider – A Toolkit for the Java Cryptography Architecture (JCA/JCE). see
http://www.flexiprovider.de, 2010.

[Ges10] J. V. Gesser. javaparser. see http://code.google.com/p/javaparser/, 2010.

[GNU09] GNU Classpath. see http://www.gnu.org/software/classpath/, 2009.

[HWS06] M. Huisman, P. Worah, and K. Sunesen. A Temporal Logic Characterisation of
Observational Determinism. In Proceedings of the 19th IEEE Computer Security
Foundations Workshop (CSFW), pages 3–15. IEEE, 2006.

[JIF08] JIF: Java + information flow). see http://www.cs.cornell.edu/jif/, 2008.

[KM07] B. Köpf and H. Mantel. Transformational Typing and Unification for Automatically
Correcting Insecure Programs. International Journal of Information Security (IJIS),
6(2–3):107–131, 2007.

[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, LNCS 1109, pages 104–113. Springer-
Verlag, 1996.

[KSWH00] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of
product ciphers. Journal of Computer Security, 8(2,3):141–158, 2000.

[LM09] A. Lux and H. Mantel. Declassification with Explicit Reference Points. In M.
Backes and P. Ning, editors, Proceedings of the 14th European Symposium on
Research in Computer Security (ESORICS), LNCS 5789, pages 69–85. Springer,
2009.

[MPSW05] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The Program Counter Se-
curity Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks. In Proceedings of the 8th Annual International Conference on Informa-
tion Security and Cryptology (ICISC), LNCS 3935, pages 156–168, 2005.

28 References

[MR07] H. Mantel and A. Reinhard. Controlling the What and Where of Declassification
in Language-Based Security. In Proceedings of the 16th European Symposium on
Programming (ESOP), LNCS 4421, pages 141–156. Springer, 2007.

[MS10] H. Mantel and H. Sudbrock. Flexible scheduler-independent security. In Pro-
ceedings of the 15th European Symposium on Research in Computer Security (ES-
ORICS), LNCS 6345, pages 116–133. Springer, 2010. (to appear).

[Mye99] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Languages
(POPL), pages 228–241, 1999.

[RS06] A. Russo and A. Sabelfeld. Securing Interaction between Threads and the Sched-
uler. In Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW), pages 177–189. IEEE, 2006.

[Sch05] W. Schindler. On the Optimization of Side-Channel Attacks by Advanced Stochas-
tic Methods. In Proceedings of the 8th International Workshop on Theory and
Practice in Public Key Cryptography, LNCS 3386, pages 85–103, 2005.

[SM03] A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework for
the Analysis of Side-Channel Key Recovery Attacks. In Proceedings of the 28th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, volume LNCS 5479, pages 443–461, 2009.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proceedings of the 13th IEEE Computer Security Foundations Workshop
(CSFW), pages 200–215, Cambridge, UK, 2000.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Anal-
ysis. Journal of Computer Security, 4(3):1–21, 1996.

[ZM03] S. Zdancewic and A. C. Myers. Observational Determinism for Concurrent Pro-
gram Security. In Proceedings of the 16th IEEE Computer Security Foundations
Workshop (CSFW), pages 29–43. IEEE, 2003.

References 29

