Automated Synthesis of Induction Axioms for
Programs with Second-Order Recursion

Markus Aderhold

Technische Universitat Darmstadt, Germany
aderhold@informatik.tu-darmstadt.de

Abstract. In order to support the verification of programs, verification
tools such as ACL2 or Isabelle try to extract suitable induction axioms
from the definitions of terminating, recursively defined procedures. How-
ever, these extraction techniques have difficulties with procedures that
are defined by second-order recursion: There a first-order procedure f
passes itself as an argument to a second-order procedure like map, every,
foldl, etc., which leads to indirect recursive calls. For instance, second-
order recursion is commonly used in algorithms on data structures such
as terms (variadic trees). We present a method to automatically extract
induction axioms from such procedures. Furthermore, we describe how
the induction axioms can be optimized (i. e., generalized and simplified).
An implementation of our methods demonstrates that the approach fa-
cilitates straightforward inductive proofs in a verification tool.

1 Introduction

For the verification of programs one usually needs to show that a program
behaves as expected for all possible inputs. Therefore formal specifications of
expected properties often contain universal quantifications. In order to prove
a universal formula Vz: 7. 9[z], many theorem provers employ explicit induc-
tion [ABATOTTIE. Given a well-founded relation > on the domain 7 that the
quantification ranges over (i. e., a relation without infinite chains qg = ¢1 > ¢2 >
...), the general schema of well-founded induction permits the inference

Vo:r. (Vo' i1 2 = o' — ¢[2']) — ¢[a]
V7. Pz

(1)

For a concrete well-founded relation >, we call an induction axiomﬂ

From the infinitely many well-founded relations > that exist for each non-
trivial data type 7, in general only few relations are suitable to prove Va : 7. ¢[z]
for a given formula . Thus finding an appropriate well-founded relation > for
a formula v is an essential challenge in program verification.

One particularly successful approach to finding a suitable induction axiom for
a formula ¢ is recursion analysis, which was pioneered by Boyer and Moore [5].

! The term “axiom” emphasizes that well-foundedness of > need not necessarily be
proved within the formal system, but may be assumed when applying .

J. Giesl and R. Hahnle (Eds.): IJCAR 2010, LNAI 6173, pp. 263-277, 2010.
© Springer-Verlag Berlin Heidelberg 2010
The original publication is available at www.springerlink.com!

http://dx.doi.org/10.1007/978-3-642-14203-1_23

Variants have been developed that are used in current theorem provers, see
[A9ITOIT3] for instance. The idea is to exploit the strong relationship between
recursion and induction by uniformly extracting well-founded relations from ter-
minating, recursively defined procedures occurring in formula .

In this paper we describe a method for recursion analysis of procedures with
second-order recursion. A procedure f is defined by second-order recursion if f
calls a second—orderﬂ procedure g using f in a function argument for g, e.g.,
g(f,...) [BII2]. Typical examples of second-order recursion arise in algorithms
on variadic trees such as terms; e. g., applying a substitution to a term, counting
the variables in a term, computing the size of a term (cf. Figs. [I| and . The
following examples illustrate how recursion analysis works and why second-order
recursion is a challenge for current theorem provers.

FEzxzample 1. Fig. a) shows an example program that defines data types bool,
N, and list[QA] (where @A is a type variable) by enumerating the respective
data constructors true, false, 0, succ, ¢, and “::”. Each argument position of
a data constructor is assigned a selector function; e.g., selector pred denotes
the predecessor function. Procedure sum computes the sum of all numbers in a
list k. An induction axiom for proofs about sum can be directly read off from
the recursive definition:

Vk:list[N]. k=0 — o[k] Vk:list[N]. k#0 A G[t(k)] — G[k]
Vk : list|N]. [k]

(2)

The base case of the recursion becomes a base case of the induction. The recursive
call sum(tl(k)) gives rise to the induction hypothesis ¢[tl(k)] in the step case.

Ezample 2. In Fig. (b), procedure map is a second-order procedure that gets a
first-order function f as argument. Procedure varcount uses second-order recur-
sion to count the number of variables in a term ¢, modeled by data type term.
(Expressions of the form ?cons(t) check if ¢ denotes a value of the form cons(...).)
While it is easy to see that ?var(t) is a base case of the recursion, the arguments
of the recursive calls of varcount are not obvious from the source code. However,
this information about the indirect recursion via map is necessary to synthesize
an induction axiom for varcount. &

Isabelle builds on the concept of so-called congruence rules that tell the sys-
tem which function calls need to be evaluated [T2l§]. For example, a procedure
call map(f, k) requires evaluation of f(z) for all z € k. From this knowledge one
can infer that varcount is recursively called on all terms z € args(t). A drawback
of congruence rules is that the user needs to state and prove the corresponding
congruence theorems. Moreover, for a fixed set of congruence rules—possibly
supplied by libraries—the resulting induction axioms may easily become subop-
timal (e. g., due to weak induction hypotheses) [g].

2 As in [3], we define the order o(7) of base types 7 like N or list[N] as 0; the order of
a functional type 71 X ... X 7, — 7 is 1 + max; o(7;) for a base type 7.

(a) structure bool <= true, false
structure N <= 0, succ(pred : N)
structure list[QA] <= g, =(hd : QA, tl: list[QA])
procedure sum(k: list[N]) : N <=
if k=9 then 0 else hd(k) + sum(tl(k))

(b) structure variable.symbol <= variable(varID : N)
structure function.symbol <= func(funcID : N)
structure term <=

var(vsym : variable.symbol),

apply(fsym : function.symbol, args : list[term])
procedure map(f: QA — @B, k: list[QA]) : list[QB] <=
if k=9 then ¢ else f(hd(k))::map(f,tl(k))
procedure varcount(t : term) : N <=
if Tvar(t) then 1 else sum(map(varcount, args(t)))

Fig. 1. A functional program with (a) the first-order procedure sum and (b) the
second-order procedure map and second-order recursion in procedure varcount

The contributions of this paper

(1) allow the automated extraction of induction axioms from procedures that
are defined by second-order recursion (e. g., procedure varcount) and

(2) facilitate the optimization (i.e., generalization and simplification) of induc-
tion axioms, which permits more straightforward inductive proofs.

The optimization also helps to reveal the essence of the recursion structure of
a procedure. This supports the heuristic selection of an induction axiom for a
formula 1 (as ¥ usually involves more than just one procedure). However, such
a heuristic selection is beyond the scope of this paper.

The input for our methods is the source code of the procedures and their
termination proofs. In particular, our approach does not require additional user
input such as congruence theorems. It has been implemented and integrated into
\é)riFun, a semi-automated verifier for functional programs [16].

In Sect. 2] we give a brief overview over the programming language and some
terminology that we use afterwards. Sect. [3| describes the synthesis of so-called
quantification procedures that we use to formulate induction hypotheses. The
synthesis of induction axioms is presented in Sect. [d] We describe techniques for
their optimization in Sect. [5] and compare our methods with related techniques
in Sect. [f] We conclude with experimental results in Sect. [7]

2 Programming Language and Terminology

We briefly summarize the relevant features of VeriFun’s input language £ [T[15]
that roughly corresponds to the second-order fragment of ML or Haskell with
strict evaluation; additional details can be found in [IIT5].

L offers definition principles for freely generated polymorphic data types,
for first-order and second-order procedures that operate on these data types,
and for statements about the data types and procedures. A base type is a type
variable @A or an expression of the form str[r, ..., x|, where 71, ..., 7% are base
types and str is a k-ary type constructor (k > 0). A type is a base type or an
expression of the form 7 X ... x 1, — 7 for types 71, ..., 7k, 7. Type constructors
are defined by expressions of the following form:

structure str[QAy,...,QA;] <= ..., cons(sely:71,...,8€l,:Tn), ...

The 7; are base types, and str may only occur as str[QA;,...,QA] in the 7;.
Each cons is called a data constructor and the sel; are called selectors.

Let X' (P) denote the signature of all function symbols defined by an L-
program P. As usual, T(X(P),V) denotes the set of all terms over X' (P) and
a set V of variables. We write 7 (X(P)) instead of T(X(P),0) for the set of all
ground terms over X (P). X (P)¢ C X(P) contains all data constructors of P. A
literal is an if-free Boolean term or the negation if b then false else true of such
a term. CL(X(P),V) is the set of clauses over X(P), i. e., the set of all finite sets
of literals. For a term ¢t € T(X(P),V), we let II(¢) C IN* denote the set of all
positions of ¢, i.e., II(¢) comprises the positions of all subterms of . We write
t|. for the subterm of ¢ at position 7 € II(¢).

For a ground typeﬂ 7, V(P). denotes the “values” of type 7: If 7 is a ground
base type, V(P), := T(X(P)°),, and for each ground type 7 =7 X ... X 7, —
Tr+1, V(P), contains all closed (i.e., no free variables) A-expressions of type 7;
e.g., At : term. varcount(t) € V(P)term—nN-

The call-by-value interpreter evalp : T(X(P)) — V(P) defines the oper-
ational semantics of £ [I] by mapping ground terms ¢ € T(X(P)), to val-
ues evalp(t) € V(P),. It is a partial function, because some procedures in
program P may not terminate. A universally quantified formula of the form
VE1:T1, oy &y Tn. b, where b € T(X(P),V)bool, is true iff all procedures in P
terminate and evalp/(b[q1, ..., ¢s]) = true for each terminating program P’ O P
and all ¢1,...,q, € V(P’)E|

We implicitly assume procedure bodies to be in n-long form; e. g., map(f, ti(k))
abbreviates map(Az: @A. f(z), ti(k)) in Fig. |1} because f =, A\z:@QA. f(z). The
following definition formalizes the notion “f(q) requires the evaluation of g(¢’)”:

Definition 1. For a procedure or A-expression f with body By and parameters
X1,...,Tpn, a procedure or A-expression g, and qi,...,Gn, qis---,qm € V(P),
we write f(qi,...,qn) > 9(q1,...,q,) iff By contains a subterm h(t},...,t,)
under some call contextlﬂ C such that for o .= {x1/q,...,¢n/an}, 0(h) =, g,
evalp(a(c)) = true for all c € C, and q; = evalp(c(t})) for all j =1,...,m. We
write f(QI7>qn) I>g g(‘]i’ﬂ];n) Zﬁf(Qla,Qn) > hl() >...> hk() >
9(qh, ..., q,,) such that h; #, g foralli=1,... k.

For example, map(varcount, ty ::tg::t3::0) > varcount(ty).

3 A ground (base) type is a (base) type without type variables; e. g., list[N].
4 Program P’ may define additional data types and procedures to instantiate the ;.
5 C € CL(Z(P),V) consists of the conditions in By that lead to the call h(...).

procedure every(f : QA — bool, k : list[QA]) : bool <=
if k=0 then true else if f(hd(k)) then every(f,tl(k)) else false

procedure foldl(f:@QA x @B — @A, z:QA, k:list[@B]) : QA <=
if k=9 then z else foldl(f, f(x,hd(k)), ti(k))

procedure groundterm(t : term) : bool <=
if Tvar(t) then false else every(groundterm, args(t))

procedure termsize(t : term) : N <=
if Tvar(t) then 1 else foldl(An:N,s:term.n + termsize(s), 1, args(t))

Fig. 2. Second-order recursion in procedures groundterm and termsize

3 Quantification Procedures

Quantification procedures are system-generated procedures that iterate over cer-
tain values z and check if a given predicate p is satisfied for all these values z.

Quantification Procedures for Data Types. Consider the usual structural induc-
tion axiom for terms: In the base case, one proves that [t] holds if ¢ is an
arbitrary variable. In the step case, t is of the form f(¢1,...,t,) and one proves
¥[t] under the induction hypothesis that “i[¢;] holds for all ¢ = 1,...,n”. In
general a program does not contain procedures to access the i-th element of list
args(t) = t1:: ... ity 10 or to quantify over all elements of list args(t). Hence
we assume that for each data type str[@QA] a quantification procedure

procedure forall.str(p: QA — bool, x: str[QA]) : bool (3)

is synthesized that returns true iff p(z) holds for all items z: @A in x. PVS and
vériFun synthesize such quantification procedures automatically [1T1].

Ezample 3. For data type list[@A], Fig. B[a) shows quantification procedure
forall.list that checks if some predicate p on @A is satisfied for all elements z: @A
of a list k. Thus the axiom for structural induction on terms can be expressed
(and automatically extracted by PVS and \@riFun) as

Vit term. Tvar(t) — [t]
Vi term. Tapply(t) A forall.list(As: term.[s], args(t)) — [t]
Vit term.]

where the induction hypothesis forall.list(...) states that t[s] may be assumed
for all terms s in list args(t). O

Quantification Procedures for Second-Order Procedures. As Example [2] shows,
the recursion analysis for procedure varcount needs to find out which arguments z
the second-order procedure map calls its first-order parameter f := varcount
with. The induction hypothesis in the induction axiom for varcount will then
quantify over all these arguments z to ensure [z].

(a) procedure forall.list(p: @A — bool, k:list[QA]) : bool <=
if k=0 then true else if p(hd(k)) then forall.list(p, tl(k)) else false

(b) procedure forall. map(p: @A — bool, f:QA — QB, k:list[QA]) : bool <=
if k=9 then true else if p(hd(k)) then forall.map(p, f,tl(k)) else false

procedure forall.every(p, f: @A — bool, k: list[QA]) : bool <=
if k=0 then true
else if p(hd(k)) then if f(hd(k)) then forall.every(p, f,tl(k)) else true
else false

procedure forall.foldl(p: QA X QB — bool, f: QA x QB — QA,
z:QA, k:list[QB]) : bool <=
if k=9 then true
else if p(x, hd(k)) then forall.foldl(p, f, f(x, hd(k)), tl(k)) else false

Fig. 3. Automatically synthesized quantification procedures

For that purpose we introduce a new concept, namely quantification proce-
dures forall.proc for second-order procedures proc. For the sake of readability,
we define forall.proc for second-order procedures proc with one first-order pa-
rameter f and an (optional) second formal parameter . This definition can be
generalized to more parameters in a straightforward way [IJ.

Definition 2. For each terminating second-order procedure
procedure proc(f:7T1 X ... X Ty, = T, T:Ts) : Tproc <= Bproc

the quantification procedure forall.proc for proc is defined by
procedure forall.proc(p: 11 X ... X T — bool,
fimi X o X Ty = Ty, :7,) ¢ bool <= ALL¢(Bproc)

where

ALL(v) := true

ALLf(f(t1,- . tm)) = p(t1, .. tm) AALLf(£1) A ... A ALLf ()
ALL¢(g(t1,...,tn)) ;= ALLs(t1) A ... AALLf(25)

ALLf(h(Ay.t, t')) := ALLf(t') A forall.h(Ay. ALLf(¢), Ay.t, t')

ALLf(if t1 then to else t3) :== ALLy(t1) A if t1 then ALLy(t2) else ALLy(¢3)
for any variable v, any first-order function g # if, g # f, and any second-order

procedure h (including proc). We write y as an abbreviation of y1,...,yk, and
AN B abbreviates “if A then B else false”.

Quantification procedure forall.proc checks if p(z1,...,z,) holds for all tuples
(21,...,2m) that occur as arguments of f-calls:

Ezample 4. Procedure forall.map shown in Fig. [3| checks if p(z) is satisfied for
all elements z of list k, as procedure map applies f to all elements z of k. &

f f ~f
*—0—0 -O—O

Fig. 4. Procedure every examines only the black elements of this list

Ezample 5. Procedure every in Fig. checks if f(z) is satisfied for all elements z
of list k. As soon as an element z is encountered with — f(z), procedure every
stops with result false. This is illustrated in Fig. [4] where every evaluates f(z)
only for the black elements of the list. Consequently, procedure forall.every in
Fig. [3|checks if p(z) is satisfied for the first n elements of k, wheren € {1,..., |k|}
is the smallest index such that f is not satisfied for the n-th element of k. (If
there is no element z with — f(z), then n := |k|, the length of k.) &

Ezample 6. Procedure forall.foldl checks if p(a,b) is satisfied for all pairs (a,b)
that f is applied to by foldl. &

The following lemma asserts that the quantification procedures according
to Definition [2| compute the expected result. It demands that p and f be fresh
functions, which means that these functions do not occur in the body of proc or
in the bodies of auxiliary procedures for proc. (Alternatively, one can imagine
p and f as uniquely labeled to distinguish these function calls from hard-coded
function calls in the procedure bodies.)

Lemma 1. For all x € V(P) and all fresh functions p € V(P) and f € V(P):

(1) evalp(forall.proc(p,f,x)) € {true, false}
(2) evalp(forall.proc(p,f,x)) = true <= evalp(p(qi,...,qm)) = true for all
Q1,5 qm € V(P) with proc(f,x) >¢ f(q1, .-, ¢m)

Proof. The proof is given in [I] (Sect. 3.2.2). O

4 Synthesis of Induction Axioms

In order to synthesize an induction axiom for a procedure
procedure p(z:7): 7 <= B,

we analyze the recursive calls in the body B, of procedure p. In case of second-
order recursion, the indirect recursive calls are nested in A-expressions, so in
general we need to analyze a subterm ¢ of B,.

A result term of t is a maximal subterm of ¢ that occurs outside of if-
conditions and A-expressions and does not contain if-expressions. We define
H;’,ase(t) C II(t) as the set of the positions of the base cases of p in ¢, i.e., the
positions of those result terms that do not contain calls of p. TI*!(¢) C TI(t)
denotes the set of the positions of direct recursive calls, i.e., calls p(...) outside
of \-expressions. Finally, IT'*(¢) C II(t) denotes the set of positions of second-
order recursive calls, i.e., calls p(...) inside a A-expression that is passed to a

second-order procedure. For some 7 € IL,(t) := I15%¢(¢) U IIt (¢) U T2 (t), we
write CT for the call context of the subterm at position 7 in ¢ (i.e., the set of
conditions that lead to 7).

In the base and step cases of an inductive proof of Vz : 7. ¥[z], 1[x] needs to be
shown under certain premises. Given a subterm ¢ of B, and a position 7 € II,(¢),
the premise Prem7 (1,) is constructed as follows:

— If 7 € II5"%(t), we get a base case of the induction: Prem7 (¢,t) := A\ CF.
— If m € IIz°!(t), we have a recursive call t| = p(t') for some ', which gives
rise to an induction hypothesis: Premp (,t) := A CT A y[t'].

— If 7 € II(t), then there is a minimal prefix ' of = such that ¢, =
h(Ay.t", t') for some second-order procedure h, and " contains a recursive
call at position 7" € II,(¢") that is a suffix of 7. Thus we use the quantifi-
cation procedure forall.h in the induction hypothesis to assert that .. .]
holds for the arguments of the respective p-call within \y.¢":

Premy (1,1) := ANCF A forall.h(Ay. Prem;,,(@/},t”), Myt 1)
These premises are used in the induction axiom for procedure p as follows:

Definition 3. For a terminating procedure procedure p(z:7): 7/ <= B, the
induction axiom for p is given by
{Vm:T. Prem;(w,Bp) —] } mTe Hp(Bp)}
V7. P[]

Ezample 7. The base case of procedure varcount (cf. Fig. |1 is given by result
term “1” under call context {?var(t)}. After n-expansion, second-order recursion
occurs in map(As: term. varcount(s), args(t)). Thus the induction axiom is:

Vit term. Tvar(t) — [t]
Vit term. = Tvar(t) A forall.map(As: term.[s], varcount, args(t)) — [t]
Vi : term. t]

In the induction hypothesis, procedure forall.map asserts As:term.[s] for all
calls of \s: term. varcount(s) by map. O

Ezample 8. In the induction axiom for groundterm (cf. Fig. , the step case is
Vit term. = Tvar(t) A forall.every(As : term.1[s], groundterm, args(t)) — ¥[t]. &

Definition [3| can easily be generalized to accommodate procedures with more
parameters. We illustrate this with two examples:

Ezample 9. Procedure termsize (cf. Fig.|2) is defined by second-order recursion
via foldl, which receives a third argument that is just passed on to forall.foldl:
The induction hypothesis

fomll.foldl(/\n :N,s:term.[s], An:N,s:term.n + termsize(s), 1, args(t))

asserts ¢[s] for all elements of args(t). &

structure predefinedSymbol <= T, CONS, CAR, CDR, LIST, QUOTE, IF,...
structure sexpr <=

nil, lispsymbol(name : predefinedSymbol), cons(car : sexpr, cdr : sexpr), ...
structure maybe[QA] <= nothing, just(what: QA)
procedure mapsz(f : sexpr — maybe[sexpr], x:sexpr) : maybe[sexpr] <= ...
procedure eval(expr, va, fa: sexpr, n:N) : maybe[sexpr] <=

... mapsz(Aarg : sexpr. eval(arg, va, fa,n), cdr(expr))...

Fig. 5. Excerpt from a LISP Interpreter eval

Ezample 10. In [6], Boyer and Moore describe a LISP Interpreter eval that eval-
uates LISP s-expressions (cf. Fig. ‘ Since the evaluation of a LISP function call
(F T1 ... Tn) requires the evaluation of the list (T1 ... Tn) of arguments,
they introduce an auxiliary procedure

procedure evlist(expr, va, fa: sexpr, n:N) : maybe[sexpr]

that considers expr as a list of s-expressions and successively evaluates these
s-expressions by calling eval on each of them. Thus eval and evlist are mutually
recursive. Due to lacking support of mutual recursion, Boyer and Moore merge
both procedures into a single procedure ev that is parameterized by a flag to
indicate if a single s-expression or a list of s-expressions is to be evaluated.

Second-order recursion provides a much more elegant way to implement the
interpreter: Procedure mapsz considers parameter x as a list, applies f to car(z),
car(cdr(z)), car(cdr(cdr(x))), ..., and returns an s-expression that represents
the list of the result values. If an application of f yields nothing, the iteration
stops and mapsz returns nothing. Procedure eval then uses second-order recur-
sion via mapsz to evaluate a “list” cdr(expr) of s—expressionsﬂ

According to Definition [2] our approach synthesizes a quantification proce-
dure forall.mapsz(p: sexpr — bool, f:sexpr — maybe[sexpr]|, x:sexpr) : bool
that checks p(z) for all calls f(z) by mapsz. In one of the step cases of the in-
duction axiom for eval for a proof of Vexpr, va, fa : sexpr, n:N. ¢[expr, va, fa,n)
the induction hypothesis is

forall.mapsz(\arg : sexpr. larg, va, fa,n],
Aarg : sexpr. eval(arg, va, fa,n), cdr(expr)) . &

Theorem 1. The induction aziom from Definition [3 for a terminating proce-
dure p is an instance of well-founded induction.

Proof (sketch). The relation > on 7, defined by x > 2’ iff p(z) >, p(z'), is well-
founded, because p terminates. This relation can be syntactically represented by

S Parameter va models the variable assignment, and fa associates function symbols
with their definition. If the resource limit n for the evaluation of expr does not suffice,
eval returns nothing as in [6]. The complete source code is several pages long [IJ.

a formula that may use the quantification procedures from Sect. |3] This formula
can be used to instantiate the schema of well-founded induction to obtain
the induction axiom from Definition [3] see [1] (Sect. 5.2.2 and 5.3). O

Hence Definition [3l describes a method to extract induction axioms from the
source code of procedures with second-order recursion. These induction axioms
precisely mirror the recursive structure of the respective procedure.

5 Optimization of Induction Axioms

Induction axioms from terminating procedures often are overly specific and thus
suboptimal [BIIOIT3ITA]. This also holds for many induction axioms that are
synthesized according to Definition [3] In the following, we describe optimization
techniques for the case of second-order recursion.

Similarly to many existing optimization techniques for procedures without
second-order recursion, our approach examines the termination proof of the re-
spective procedure to find optimizations: Intuitively, “components” of induction
axioms (e. g., subformulas or parameters) that are irrelevant for the termination
proof are also irrelevant for the induction axiom, because well-foundedness of
the underlying relation obviously does not depend on these components.

5.1 Optimization of Quantification Procedures

Quantification procedures as in Definition [2| play a pivotal role in induction ax-
ioms for procedures with second-order recursion. Our approach optimizes quan-
tification procedures along the following three dimensions (in this order):

(1) Reduce the arity of the additional predicate p.
(2) Extend the range of the quantification.
(3) Reduce the number of parameters of the quantification procedure.

Optimizations along dimensions and obviously increase the readabil-
ity of induction hypotheses by making them syntactically simpler. In addition,
they facilitate a final polishing of induction axioms that simplifies their use in
proofs. Optimizations along dimension strengthen the induction hypotheses
by generalizing them, so ¢[z] may be assumed for further values z.

In the induction axiom for procedure groundterm, for example, the induction
hypothesis forall.every(As: term.1[s], groundterm, args(t)) only ensures that
holds on a prefix of list args(t), because every in general only examines a prefix
of list k (cf. Example [5). This is suboptimal, because from structural induction
we know that it would be safe to assume that 1 holds for all elements of args(t).

In a typical termination proof for procedure groundterm, one tries to show
that the parameter of groundterm gets structurally smaller in recursive calls [2I8ITT].
Clearly, args(t) is structurally smaller than ¢, because the leading apply-constructor
is missing. Procedure every applies f := groundterm only to values s € {hd(k), hd(tl(k)), hd(t(tl(k))),...}
for k := args(t). Since each such value s is structurally not larger than args(¢),

10

one concludes that each argument s of a recursive call of groundterm is struc-
turally smaller than ¢, which proves termination of groundterm.

Apparently the proof that procedure every applies f only to values z that
are structurally not larger than k does not use the fact that every stops as soon
as it encounters an element z with = f(z). Formally, condition f(hd(k)) from the
body of every is not used in the proof. Thus groundterm would still terminate
if every continued with the examination of list elements in case - f(hd(k)).
Then the case analysis over f(hd(k)) in the body of forall.every would become
unnecessary, and the induction hypothesis for groundterm would assert 1 for all
elements of args(t) as desired.

Consequently, we optimize quantification procedures as follows:

Definition 4. Let proc(f: T4 X ... X Ty, = Tf, T:Tz) : Tproc be a procedure and
i€ {l,...,m}. Let Prf be a proof that proc calls f only with values q1,...,qm
such that q; is structurally not larger than xm We say that proc is call-bounded
wrt. the i-th argument of f and define the synthesis of the optimized quantifica-
tion procedure forall]” ¢ proc for proc as follows:

(1) Procedure fomllfpt.proc(p:n — bool, f:T1 X ...X Ty = Ty, T:7Ty) : bool is
derived from forall.proc by replacing all subterms p(ty, ..., tm) in the proce-
dure body with p(t;).

(2) For each case analysis over some term c in the body of proc such that
c is not used in Prf, the corresponding case analysis over c in the body
of fomllfpt.proc is replaced with the conjunction of its branches.

(8) Fach unused parameter offomllfpt.proc s removed.

Call-bounded procedures can be identified by the approach in [2], for example.
Unused conditions ¢ of case analyses can be read off from proofs Prf.

Ezxample 11. Procedure foldl is call-bounded wrt. the 2nd argument of f, so
step (1)) reduces the arity of p to p: @B — bool. In step (3], parameters z and f
are removed from forall?* . foldl (in this order). Thus

procedure forally"".foldl(p: QB — bool, k: list[@B]) : bool <=
if k=0 then true else if p(hd(k)) then forall3"".foldl(p, ti(k)) else false

checks p(z) for all elements z of k, and forall3"" .foldl(p, k) < forall.list(p, k). <

Ezxample 12. For forall.every, steps and apply: A proof that every is call-
bounded does not use condition ¢ := f(hd(k)) (i.e., the fact that every stops
the iteration over list & when — f(hd(k)) holds). Thus the case analysis over
f(hd(k)) in the body of forall.every can be removed, and parameter f is no
longer used. Hence forall°"*.every in addition checks p for the gray elements in
Fig. |4, and forall®”*.every(p, k) < forall.list(p, k). &

Ezxample 13. For procedure forall.map, only step applies, which removes the
unused parameter f, so forall®®.map(p, k) < forall.list(p, k). &

" The structural size of values can be determined by a size measure as in [2].

11

Fig. 6. Procedure mapsz applies f to the black entries of this s-expression

Ezample 14. Fig. [6] shows an exemplary s-expression z. When applying mapsz
to x, function f is potentially applied to the black and the gray nodes (cf.
Example. A node z is labeled with “fv™” if ?just(f(z)), whereas “f4” means
f(2)=nothing. As “f4” holds for the third black node, procedure mapsz stops
here and does not apply f to the gray nodes. Since a proof that mapsz is call-
bounded (i. e., that f is only applied to s-expressions z that are structurally not
larger than the whole s-expression z) does not use the fact that the iteration
may stop early, the optimized quantification procedure

lopt

procedure forall®?".mapsx(p: sexpr — bool, x: sexpr) : bool

checks p(z) for both the black and the gray nodes. &

5.2 Optimized Induction Hypotheses For Second-Order Recursion

We optimize induction axioms for procedures with second-order recursion by
using the optimized quantification procedures if possible:

Definition 5. Let p be terminating procedure. If the termination proof for p ex-
ploits that some second-order procedure h is call-bounded, the optimized induc-
tion axiom for p is obtained by replacing forall.h with forall°*.h in the induction
axiom from Definition E If forall°P* .1 is equivalent to forall.str for some type
constructor str, then forall.str is used instead of forall®’*.h.

Ezample 15. The optimized induction axioms for wvarcount, groundterm, and
termsize are equivalent to the structural induction axiom from Example
Vi term. Tvar(t) — [t]
Vi term. = Tvar(t) A forall.list(As: term.y[s], args(t)) — P[]
Yt term. lt]

This induction axiom is significantly stronger than the non-optimized induction
axiom for groundterm: In the optimized axiom [s] may be assumed for all
terms s in list args(t) as induction hypothesis. In contrast, in the non-optimized
axiom [s] may only be assumed for the first n terms in args(t), where n is the
index of the first term s in args(t) with — groundterm(s). O

8 Syntactical identity up to a renaming of formal parameters is a sufficient and prac-
tically useful criterion for equivalence of quantification procedures.

12

Ezample 16. For the LISP interpreter of Example and some s-expression
cdr(expr) as in Fig.[6] the induction hypothesis asserts 1[ary, . ..] only for black
entries before the optimization (where f corresponds to the LISP interpreter
eval). After the optimization, forall®”".mapsz(Narg : sexpr.[arg,n), cdr(expr))
asserts ¥[arg, ...] also for the gray nodes (i.e., for all elements of the “list”).

As the examples demonstrate, the optimization leads to intuitive induction
axioms. The induction hypotheses correspond to the recursive calls of the re-
spective procedure without being restricted by unnecessary preconditions.

Theorem 2. The optimized induction aziom from Definition [3 for a terminat-
ing procedure p is an instance of well-founded induction.

Proof (sketch). The optimization drops case analyses (in quantification proce-
dures forall.h) on conditions that are irrelevant for the termination proof of p.
Thus there is a modified copy p’ of p where these case analyses are dropped in h
(cf. Sect. 5.2.3 in [I]). Procedure p’ terminates and the non-optimized induction
axiom for p’ is equivalent to the optimized induction axiom for p. a

6 Related Work

In Isabelle [RIT0IT2] induction theorems are synthesized (and proved within Is-
abelle’s higher-order logic) for terminating procedures and data types. Since
higher-order logic is not a programming language and thus lacks an operational
semantics, Isabelle cannot determine which function calls are required to evalu-
ate a given term. Therefore, induction axioms for procedures with second-order
recursion cannot be synthesized from just the source code. To solve this problem,
the user can specify congruence rules by proving congruence theorems such as
k=K A (Vz:QA. z € k — f(2)=f'(z)) = map(f,k)=map(f’ k'), which tells
Isabelle that for map(f, k) the values f(z) for at most all z € k are relevant. The
resulting induction theorem for procedure varcount is equivalent to our induc-
tion axiom from Example[T5 Syntactically, the quantification over the elements s
in args(t) is expressed by Vs:term. s € args(t) — [s], where the notion “€”
of list membership stems from the user’s congruence rule. Thus the induction
theorems directly depend on the congruence rules, and the only way to optimize
induction theorems is to (manually) modify the congruence rules. However, this
becomes impossible when two function calls require different sets of congru-
ence rules (e.g., see the example with procedure testany in [§]), so “in general,
there is no ‘best’ or ‘complete’ set of congruence rules” [§]. Apart from that,
the induction theorem for data type term is different from the usual structural
induction and targets the simultaneous proof of two formulas V¢ : term. ¢[t] and
Vk : list[term]. ¥[k] based on the mutual recursion of types term and list[term)].

In contrast, PVS [I1] synthesizes quantification procedures for parameterized
data types such as list[@A] and uses these procedures for structural induction
axioms (e.g., for data type term). While PVS uses constructor induction, our
induction axioms use destructor induction. PVS does not synthesize induction

13

axioms for (terminating) procedures and hence does not offer techniques to op-
timize induction axioms.

In ACL2 [59] induction axioms are synthesized for data types and for ter-
minating procedures. Induction axioms are optimized using various techniques
(e.g., [9]). However, procedures cannot be defined by second-order recursion.

For Coq, Barthe et al. [4] describe a tool that synthesizes induction axioms
for terminating procedures, but second-order recursion is not supported.

Bundy et al. [7] developed a technique to construct induction axioms for the
synthesis of procedures. In their approach, the goal is to find novel induction
axioms that do not correspond to the recursive structure of existing procedures.
Second-order recursion is not considered in this approach.

7 Conclusion

Our approach to automatically extract induction axioms from terminating pro-
cedures consists of two main steps: Firstly, it synthesizes induction axioms that
precisely mirror the recursive structure of the procedures. For procedures with
second-order recursion, the indirect recursive calls are captured using so-called
quantification procedures that are synthesized automatically for the respective
second-order procedures. Secondly, induction axioms are optimized automati-
cally (i.e., generalized and simplified) by inspecting the termination proofs of
the respective procedures. For that purpose our approach in particular optimizes
the quantification procedures to strengthen the induction hypotheses.

The vision behind our approach is that a degree of automation can be
achieved for the verification of second-order programs that is comparable to
highly automated verification_tools for first-order programs, e.g., ACL2. Prac-
tical experiments in \/eriFuIﬂ (involving 21 procedures with second-order re-
cursion, 14 main theorems and 28 auxiliary lemmas) showed that our methods
in fact synthesize induction axioms that are neither too specific (as “precise”
induction axioms tend to be) nor too general (as axioms for complete induction
would be). This facilitates intuitive proofs, i.e., proofs that are quite similar to
what one would do using paper and pencil. Hence our approach contributes to
achieving such a high degree of automation.

For example, the optimization of induction axioms considerably simplifies the
proof that varcount(t) = 0 implies groundterm(t). With the optimization, a simple
auxiliary lemma is required: If p(z;) and p(z;) — ¢(z;) hold for all elements z;
of a list k, then ¢(z;) holds for all elements z; of k. Without the optimization,
the user needs to discover and prove a much more complicated auxiliary lemma:
Let n be the index of the first element z, of a list & with —¢(z,), or n := |k|
if there is no such element in k; if p(z;) and p(z;) — ¢(z;) hold for the first n
elements z; of k, then ¢(z;) holds for all elements z; of k.

We expect that our approach can be transferred to other programming lan-
guages with call-by-value semantics; for ML, this might require to also consider

9 see http://www.mais.informatik.tu-darmstadt.de/Markus_Aderhold.html

14

http://www.mais.informatik.tu-darmstadt.de/Markus_Aderhold.html

axioms for constructor-style induction. Our commitment to an evaluation strat-
egy makes it possible to uniformly determine which function calls need to be
evaluated for a given term. In contrast, Isabelle does not commit to an evalu-
ation strategy; the price for this increased flexibility is that the user needs to
formulate and prove additional theorems that at least approximate an evaluation
strategy for particular functions.

Procedures in continuation passing style provide numerous additional ex-
amples of second-order recursion, because there each procedure has a function
parameter (representing the continuation). However, in certain cases this may
involve indirect recursive calls in continuations of direct recursive calls, which
we leave as an area for further research.

Acknowledgment. 1 am grateful to Nathan Wasser for the implementation of the
approach and to the anonymous referees for constructive feedback.

References

1. M. Aderhold. Verification of Second-Order Functional Programs. Doctoral disser-
tation, TU Darmstadt, 2009.

2. M. Aderhold. Automated termination analysis for programs with second-order
recursion. In Proceedings of TACAS-16, volume 6015 of LNCS. Springer, 2010.

3. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Kluwer Academic Publishers, 2002.

4. G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about
recursive functions: A practical tool for the Coq proof assistant. In Proceedings of
FLOPS-2006, volume 3945 of LNCS, pages 114-129, 2006.

5. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, Inc., 1979.

6. R. S. Boyer and J S. Moore. A mechanical proof of the unsolvability of the halting
problem. Journal of the ACM, 31(3):441-458, 1984.

7. A. Bundy, L. Dixon, J. Gow, and J. Fleuriot. Constructing induction rules for
deductive synthesis proofs. In Proceedings of Constructive Logic for Autom. Softw.
Engineering 2005, volume 153 of ENTCS, pages 3—21. Elsevier, 2006.

8. A. Krauss. Automating Recursive Definitions and Termination Proofs in Higher-
Order Logic. Doctoral dissertation, TU Miinchen, Germany, 2009.

9. P. Manolios and A. Turon. All-termination(7"). In Proceedings of TACAS-2009,
volume 5505 of LNCS, pages 398-412. Springer, 2009.

10. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2009.

11. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, November 2001.

12. K. Slind. Reasoning about Terminating Functional Programs. PhD thesis, TU
Miinchen, Germany, 1999.

13. C. Walther. Computing induction axioms. In Andrei Voronkov, editor, Proceedings
of LPAR-3, volume 624 of LNAI pages 381-392. Springer-Verlag, 1992.

14. C. Walther. Mathematical induction. In Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 2. Oxford University Press, 1994.

15. C. Walther, M. Aderhold, and A. Schlosser. The £ 1.0 Primer. Technical Report
VFR 06/01, TU Darmstadt, 2006.

16. C. Walther and S. Schweitzer. Verification in the classroom. Journal of Automated
Reasoning, 32(1):35-73, 2004.

15

	Automated Synthesis of Induction Axioms for Programs with Second-Order Recursion
	Markus Aderhold

