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This document contains the formal proof for Theorem 1 in the article “Service
Automata” [1] (Section 2) and preliminaries for the formalism (Section 1).

1 Preliminaries

In the proof, we denote the length of a sequence s by |s|, and the projection of a sequence s to
an alphabet E of events by s � E . As a shorthand, we write e1, e2 C t for e1 C t and e2 C t.

1.1 A Primer to Hoare’s Communicating Sequential Processes

We briefly recall the sublanguage of Hoare’s Communicating Sequential Processes (CSP) used in
this article. For a proper introduction, we refer to [2].

A process P is a pair (α(P ), traces(P )) consisting of a set of events and a nonempty, prefix-closed
set of finite sequences over α(P ). The alphabet α(P ) contains all events in which P could in
principle engage. The set of possible traces traces(P ) ⊆ (α(P ))∗ contains all sequences of events
that the process could in principle perform. We use 〈 〉 to denote the empty sequence, 〈e〉 to
denote the trace consisting of the single event e, and s.t to denote the concatenation of two traces
s and t. That an event e occurs in a trace t is denoted by e C t.

The CSP process expression STOPE specifies a process with alphabet E and a set of traces
containing only 〈 〉. A process that performs event e and then behaves according to the process
expression P , is specified by e → P . External and internal choice between P and Q are specified
by P 2Q and P uQ, respectively. They model that the process behaves according to either P or
Q. The parallel composition of P and Q is specified by P ‖Q. The parallel processes have to
synchronize on the occurrences of all events that their alphabets have in common. The process
P \ E behaves as P but all events in the set E are hidden by removing them from the process’
alphabet and possible traces.

The binary operators 2, u and ‖ are lifted to n-ary operators over non-empty finite index sets.
For instance, 2x∈X P (x) equals P (a) if X = {a} and equals P (a) 2(2x∈X\{a} P (x)) if a ∈ X
and X contains at least two elements.

We use structured events of the form c.m to model the communication of a message m on a
channel c. In a process expression we write c!m instead of c.m in order to indicate that message m
is sent on c, and use c?x : M for receiving some message m ∈ M on channel c while instantiating
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the variable x with m. Effectively, c?x : M → P (x) corresponds to an external choice on the
events in {c.m | m ∈ M } such that the computation continues according to P (m).

A process definition NAME
def
=α P declares a new process name NAME and defines that NAME

models a process whose traces are given by the process expression P and whose alphabet equals α.
We omit the subscript α in a process definition if the alphabet of NAME shall equal α(P ). Process
names can be used as subexpressions within process expressions, thus allowing for recursion.

Properties of CSP processes are modeled by unary predicates on traces. We say that a unary
predicate ϕ on traces is satisfied by a process P (denoted by P satϕ) if and only if ϕ(t) holds for
each t ∈ traces(P ).

In the proofs, we denote by P / t the process P after engaging in the sequence of events t.

1.2 Semantics of CSP

The following lists the trace semantics for the CSP constructs used in the paper.
• for every set E of events, α(STOPE ) = E and traces(STOPE ) = {〈 〉};
• for process P and event e ∈ α(P ), α(e → P ) = α(P ) and traces(e → P ) = {〈 〉} ∪ {〈e〉.tr |

tr ∈ traces(P )};
• for process P , channel c, and message m, if c.m ∈ α(P ), then α(c!m → P ) = α(P ) and

traces(c!m → P ) = {〈 〉} ∪ {〈c.m〉.tr | tr ∈ traces(P )};
• for channel c, set M , and process expression P (x ) parametric in x ∈ M , if α(P (m)) =
α(P (m ′)) and c.m ∈ α(P (m)) holds for all m,m ′ ∈ M , then α(c?x : M → P (x )) = α(P (m))
for any m ∈ M and traces(c?x : M → P (x )) = {〈 〉}∪{〈c.x 〉.tr | x ∈ M ∧ tr ∈ traces(P (x ))};

• for processes P and Q with α(P ) = α(Q), α(P 2Q) = α(P ) = α(Q) and traces(P 2Q) =
traces(P ) ∪ traces(Q);

• for a non-empty finite set X and a process expression P (x) parametric in x, if α(P (x)) =
α(P (y)) for all x, y ∈ X , then α(2x∈X P (x)) = α(P (y)) for any y ∈ X and traces(2x∈X P (x)) =⋃
x∈X traces(P (x));

• for processes P and Q, α(P ‖Q) = α(P ) ∪ α(Q) and traces(P ‖Q) = {t ∈ α(P ‖Q)
∗ | t �

α(P ) ∈ traces(P ) ∧ t � α(Q) ∈ traces(Q)};
• for process P and set E of events, α(P \E ) = α(P ) \E and traces(P \E ) = {t � α(P \E ) |
t ∈ traces(P )}.

In the trace semantics, we define two processes P and Q to be equal (written P = Q), if and
only if α(P ) = α(Q) and traces(P ) = traces(Q) holds. The following recapitulates some basic
properties of CSP processes provided by Hoare in [2].

Lemma 1. Let P,Q be CSP processes, E ,E ′ be sets of events, tr be a sequence of events,
e ∈ α(P ) be an event, and f be an injective alphabet renaming function. Then

(a) f (P ‖Q) = f (P ) ‖ f (Q) [2, page 65 (L3)]
(b) P \ (E ∪ E ′) = (P \ E ) \ E ′ [2, page 92 (L2)]
(c) (P ‖Q) \ E = (P \ E ) ‖(Q \ E ) if α(P ) ∩ α(Q) ∩ E = ∅ [2, page 92 (L6)]
(d) f (P \ E ) = f (P ) \ f (E ) [2, page 92 (L7)]
(e) P /(s1.s2) = (P / s1) / s2 [2, page 32 (L2)]
(f) (e → P ) /〈e〉.tr = P / tr [2, page 32 (L2+L3)]
(g) (P 2Q) / tr = P / tr if tr ∈ traces(P ) \ traces(Q) and

(P 2Q) / tr = Q/ tr if tr ∈ traces(Q) \ traces(P ) [2, page 88 (L2)]

2 Proof of Theorem 1

In this section, we give a formal proof for [1, Theorem 1], which shows that the service automata
framework SYSTEM soundly enforces the Chinese Wall security policy.
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Theorem 1. SYSTEMsatChW.

The proof for the theorem can be found at the end of this section on page 9. To increase the
readability of the proof, we show major steps of the proof in separate lemmas:
• Lemma 2 states that the hiding in the definitions of the service automata and the local

policies can be moved outside of the controlled system, if local channels are renamed to be
unique. Definition 1 specifies the renaming and the controlled system without hiding. This
change of the hiding simplifies the reasoning about the events that are hidden in SYSTEM.

• Lemma 3 states that certain events cannot occur in traces of the instantiated service
automata: (a) decisions are not sent on channel ddec, (b) requests are not sent on channel
rdec, (c) requests and decisions are not forwarded, (d) remote decisions are not approved
for locally decidable events, and (e) local enforcement decisions are not sent to an enforcer
for events that have a remote responsible node.

• Lemma 4 states that an enforcer performs a critical event only after this enforcer has
received a corresponding decision.

• Lemma 5 states that every performed critical event must have ultimately been permitted
by its responsible node.

• Lemma 6 states that no decision-making component permits two conflicting events in a
single trace.

In the remainder of this section, we abbreviate CORi(CE i,ED i) by CORi, INTi(α(PROVi),CE i)
by INTi, and REPLACE(CE i) by REPLACEi. By DUM , we denote the set {dummyev | ev ∈ CE}
of all dummy events.

Definition 1. (a) Let i ∈ Id be an identifier. We define the set of events hidden by the service
automaton at node i as

Hi :=

{
sync.X, icpt.ev , enf.ed , lreq.ev , rreq.dr , fwd.(k, dr), ev ∈ CE i, ed ∈ ED ,
edec.ed , appv.ed , ddec.(k, dr), rdec.(k, dr) dr ∈ DR, k ∈ Id \ {i}

}
.

(b) For all identifiers i ∈ Id, let ρi : Ei → Ei ∪{ci.m | c.m ∈ Hi ∪H pol
i } be a renaming function

on Ei :=α((PROVi ‖ INTi)\CE i)∪α(REPLACEi)∪α(CORi)∪α(DELi)∪α(DECi(∅))∪α(SRPi)
such that

ρi(e) =

{
ci.m if e ∈ Hi ∪H pol

i with e = c.m,

e otherwise.

Note that H pol
i is defined in [1, page 12]. We lift the renaming functions from events to

processes as in [2, Section 2.6], by applying the renaming to all events occurring in the
respective process.

(c) The set of all renamed hidden events is defined as HS :=
⋃
i∈Id ρi(Hi ∪H pol

i ),
(d) The system with internal events, SI, is defined as

SI
def
= ‖

i∈Id

(
ρi ((PROVi ‖ INTi) \ CE i) ‖ ρi(REPLACEi)
‖ ρi(CORi) ‖ ρi(DELi) ‖ ρi(DECi(∅)) ‖ ρi(SRPi)

)
.

Lemma 2. If α(PROVi)∩(HS∪H pol
i ) = ∅ holds for all identifiers i ∈ Id, then SI\HS = SYSTEM.

Proof. For all identifiers j ∈ Id , the definitions of all processes P ∈ {CORi,DELi,DECi,SRPi | i ∈
Id \{j}} ensure α(P )∩ρj(Hj∪H pol

j ) = ∅. The precondition α(PROVi)∩(HS ∪H pol
i ) = ∅ together

with CE i ⊆ α(PROVi) [1, page 11] and the definitions of the processes REPLACEi and INTi
implies α(Q) ∩ ρj(Hj ∪ H pol

j ) = ∅ for all Q ∈ {REPLACEi, (PROVi ‖ INTi) \ CE i | i ∈ Id \ {j}}.
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We denote the above two observations as (†) below.

SI \HS = by Definition 1 (d) and Lemma 1 (a)(
‖

i∈Id
ρi

(
((PROVi ‖ INTi) \ CE i) ‖REPLACEi
‖ CORi ‖ DELi ‖DECi(∅) ‖ SRPi

))
\HS

= by Definition 1 (c), Lemma 1 (c), and observations (†)

‖
i∈Id

(
ρi

(
((PROVi ‖ INTi) \ CE i) ‖REPLACEi
‖ CORi ‖ (DELi ‖DECi(∅) ‖ SRPi)

)
\ ρi(Hi ∪H pol

i )

)
= by Lemma 1 (d)

‖
i∈Id

ρi

((
((PROVi ‖ INTi) \ CE i) ‖REPLACEi
‖ CORi ‖ (DELi ‖DECi(∅) ‖ SRPi)

)
\ (Hi ∪H pol

i )

)
= by Definition 1 (b), which gives ρi(e) = e for all e /∈ Hi ∪H pol

i

‖
i∈Id

(
((PROVi ‖ INTi) \ CE i) ‖REPLACEi
‖ CORi ‖ (DELi ‖DECi(∅) ‖SRPi)

)
\ (Hi ∪H pol

i )

= by Lemma 1 (b); by precondition α(PROVi) ∩H pol
i = ∅;

by the fact that for all i ∈ Id and P ∈ {INTi,REPLACEi,CORi}, α(P ) ∩H pol
i = ∅

holds according to the definition of P ; and by definition of POLi [1, page 12]

‖
i∈Id

(
((PROVi ‖ INTi) \ CE i) ‖POLi ‖CORi ‖REPLACEi

)
\Hi

= by definition of SAi [1, page 6] and SYSTEM [1, page 13]

‖
i∈Id

SAi(PROVi,CE i,POLi,ED i,REPLACEi) = SYSTEM

Remark 1. In the following, we repeatedly make use of the following patterns of reasoning.
• Let tr ∈ traces(SI) be a trace, P,Q be processes such that SI = P ‖Q holds, and e ∈ α(Q)

be an event. Then from e C tr we can follow that e C tr � α(Q) ∧ tr � α(Q) ∈ traces(Q).

We indicate this reasoning by
(∗)

=⇒ .
• Let Q be a process, e ∈ α(Q) be an event, trQ be a trace, and E ⊆ α(Q) be the set of

immediate predecessors of e in process Q. Then from e C trQ ∧ trQ ∈ traces(Q) we can

conclude that
∨

e′∈E (e ′ C trQ) holds. We use
(∗∗)
=⇒ to indicate this reasoning.

• We often combine the above steps in the form e C tr
(∗)

=⇒ e C trQ ∧ trQ ∈ traces(Q)
(∗∗)
=⇒∨

e′∈E (e ′ C trQ) =⇒
∨

e′∈E (e ′ C tr) for trQ = tr � α(Q). The last implication
trivially holds. In the remainder of this section, we abbreviate such chains of reasoning by

e C tr
Q
=⇒

∨
e′∈E (e ′ C tr).

Lemma 3. Let CE ld
i :={ev ∈ CE i | id(ev) = resp(ev)} be the set of locally decidable critical

events at node i ∈ Id. Then for all traces tr ∈ SI and identifiers i, j, k ∈ Id with j 6= i, the
following holds:

(a) For all decisions ed ∈ ED, it holds that ddeci.(j, (k, ed)) 6 tr .
(b) For all events ev ∈ CE, it holds that rdeci.(j, (k, ev)) 6 tr .
(c) For all events and decisions x ∈ CE ∪ ED, it holds that fwdj .(i, (i, x)) 6 tr .

(d) For all decisions ed ∈ CE ld
i × CE i, it holds that appvi.ed 6 tr .

(e) For all decisions ed ∈ ED i \ (CE ld
i ×CE i) it holds that edeci.ed 6 tr .

Proof. Let the trace tr ∈ traces(SI) be arbitrary but fixed.
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(a) Let identifiers i, j, k ∈ Id with i 6= j and decision ed ∈ ED be arbitrary but fixed. We show
the claim by contradiction and assume ddeci.(j, (k, ed)) C tr .

(∗)
=⇒ ddeci.(j, (k, ed)) C tr � α(ρi(SRPi)) ∧ tr � α(ρi(SRPi)) ∈ traces(ρi(SRPi))

=⇒ by definition of SRPi

(k, ed) ∈ Id × CE

=⇒ by the precondition Id×CE ∩ Id×ED = ∅ for SRP [1, page 9]

(k, ed) /∈ Id × ED

This contradicts the preconditions k ∈ Id and ed ∈ ED . Hence, the assumption of
ddeci.(j, (k, ed)) C tr is wrong and ddeci.(j, (k, ed)) 6 tr holds.

(b) The proof goes along the lines of the one for the previous part, with ED exchanged by CE
and ddec exchanged by rdec.

(c) We show the claim by contradiction and assume that there exist x ∈ CE ∪ED and i, j ∈ Id
with j 6= i, such that fwdj .(i, (i, x)) C tr holds.

ρj(SRPj)
======⇒ rreqj .(i, x) C tr

ρj(CORj)
======⇒ linkk,j .(i, x) C tr for some identifier k 6= j

ρk(CORk)
======⇒ ddeck.(j, (i, x)) C tr ∨ rdeck.(j, (i, x)) C tr ∨ fwdk.(j, (i, x)) C tr

(∗)
=⇒ ddeck.(j, (i, x)) C tr � α(ρk(SRPk)) ∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk))

∨ rdeck.(j, (i, x)) C tr � α(ρk(SRPk)) ∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk))

∨ fwdk.(j, (i, x)) C tr � α(ρk(SRPk)) ∧ tr � α(ρk(SRPk)) ∈ traces(ρk(SRPk))

=⇒ by definition of SRPk

j = nxt(k, i)

=⇒ by definition of nxt [1, page 12]

j = nxt(k, i) = i

The last equation contradicts the initial assumption of i 6= j. Hence, the assumption
fwdj .(i, (i, x)) C tr cannot hold, i.e., fwdj .(i, (i, x)) 6 tr holds for all j 6= i.

(d) We show the claim by contradiction and assume there exists an identifier i ∈ Id and a
decision ed = (ev , ev ′) ∈ CE ld

i × CE i such that appvi.ed C tr holds.

ρi(SRPi)
=====⇒ rreqi.(i, ed) C tr

ρi(CORi)
======⇒ linkj,i.(i, ed) C tr for some identifier j 6= i

ρj(CORj)
======⇒ ddecj .(i, (i, ed)) C tr ∨ fwdj .(i, (i, ed)) C tr ∨ rdecj .(i, (i, ed)) C tr

=⇒ by Lemma 3 (a) and Lemma 3 (c)

rdecj .(i, (i, ed)) C tr

ρj(SRPj)
======⇒ rtrspj .(i, ed) C tr

ρj(DECj(∅))
========⇒ rereqj .ev C tr

ρj(SRPj)
======⇒ rreqj .(j, ev) C tr

ρj(CORj)
======⇒ linkk,j .(j, ev) C tr for some identifier k 6= j

ρk(CORk)
======⇒ ddeck.(j, (j, ev)) C tr ∨ fwdk.(j, (j, ev)) C tr ∨ rdeck.(j, (j, ev)) C tr
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=⇒ by Lemma 3 (b) and Lemma 3 (c)

ddeck.(j, (j, ev)) C tr

ρk(SRPk)
======⇒ rtreqk.(j, ev) C tr

(∗)
=⇒ rtreqk.(j, ev) C tr � α(ρk(DELk)) ∧ tr � α(ρk(DELk)) ∈ traces(ρk(DELk))

=⇒ by definition of DELk, according to which rtreq.(j, ev)
can only occur if ev ∈ {ev ′ ∈ CEk | k 6= resp(ev ′)} holds

ev ∈ CEk ∧ k 6= resp(ev)

=⇒ by definition of id [1, page 11]

id(ev) 6= resp(ev)

=⇒ by definition of CE ld
i

ev /∈ CE ld
i

The final consequence contradicts the initial assumption of ed = (ev , ev ′) ∈ CE ld
i × CE i.

Hence, the assumption appvi.ed C tr is wrong and appvi.ed 6 tr holds.

(e) Let identifier i ∈ Id and decision ed = (ev , ev ′) ∈ ED i \ (CE ld
i × CE i) be arbitrary but

fixed. We show the claim by contradiction and assume edeci.ed C tr holds.

ρi(DECi(∅))
=======⇒ lereqi.ev C tr

(∗)
=⇒ lereqi.ev C tr � α(ρi(DELi)) ∧ tr � α(ρi(DELi)) ∈ traces(ρi(DELi))

=⇒ by definition of DELi, according to which lereq.ev
can only occur if ev ∈ {ev ′ ∈ CE i | i = resp(ev ′)}
i = resp(ev)

=⇒ by the precondition that ev ∈ CE i and by definition of CE ld
i

ev ∈ CE ld
i

The final statement contradicts the precondition ed = (ev , ev ′) ∈ ED i \ (CE ld
i ×CE i), from

which ev /∈ CE ld
i follows immediately.

Lemma 4. For all events ev ∈ CE and traces tr ∈ traces(SI) with ev C tr , it holds that there
exists an event ev ′ ∈ CE id(ev) with enfid(ev).(ev ′, ev) C tr .

Proof. Let ev ∈ CE be an event and tr ∈ traces(SI) be a trace with ev C tr . Let i := id(ev).

(∗)
=⇒ with ev ∈ CE id(ev) = CE i by definition of id [1, page 11],

CE i ⊆ α(REPLACEi) by definition of REPLACEi = REPLACE(CE i) [1, page 8],
and ρi(ev) = ev according to Definition 1 (b)

ev C tr � α(ρi(REPLACEi)) ∧ tr � α(ρi(REPLACEi)) ∈ traces(ρi(REPLACEi))
(∗∗)
=⇒ by the precondition that CE i, defined in [1, page 11],

is disjoint from the set {sync.X, enf.(ev ′, ev) | ev , ev ′ ∈ CE i}
enfi.(ev ′, ev) C tr � α(ρi(REPLACEi)) for some event ev ′ ∈ CE i

=⇒ with i = id(ev)

enfid(ev).(ev ′, ev) C tr
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Note that the second implication holds, because we concretized the replacement sequences EA
as CE i (i.e., sequences of length 1 of critical events) in [1, page 12]. Therefore, a simplified
equivalent specification of the replacer process is

REPLACEi = enf?(ev ′, ev): CE i×CE i → ev → sync!X→ REPLACEi

Lemma 5. Let ev ∈ CE \DUM be an event and tr ∈ traces(SI) with ev C tr be a trace.
Then edecresp(ev).(ev , ev) C tr or rtrspresp(ev).(id(ev), (ev , ev)) C tr holds true.

Proof. Let ev ∈ CE \ DUM be an event and tr ∈ traces(SI) be a trace with ev C tr . Let
i := id(ev).

=⇒ by Lemma 4

enfi.(ev ′, ev) C tr for some event ev ′ ∈ CE i

ρi(CORi)
======⇒ edeci.(ev ′, ev) C tr ∨ appvi.(ev ′, ev) C tr

=⇒ by Lemma 3 (d) and Lemma 3 (e)

(edeci.(ev ′, ev) C tr ∧ id(ev ′) = resp(ev ′)) ∨ (appvi.(ev ′, ev) C tr ∧ id(ev ′) 6= resp(ev ′))

In the following, we show the claim for both disjuncts separately.

(a) edeci.(ev ′, ev) C tr ∧ id(ev ′) = resp(ev ′)
(∗)

=⇒ edeci.(ev ′, ev) C tr � α(ρi(DECi(∅))) ∧ tr � α(ρi(DECi(∅))) ∈ traces(ρi(DECi(∅)))

=⇒ by definition of DECi(∅)
edeci.(ev ′, ev) C tr ∧ (ev ′ = ev ∨ ev = dummyev ′)

=⇒ by the preconditions ev ∈ CE \DUM and dummyev ′ ∈ DUM

edeci.(ev ′, ev) C tr ∧ ev = ev ′

=⇒ by the preconditions i = id(ev) and id(ev ′) = resp(ev ′)

edecresp(ev).(ev , ev) C tr

(b) appvi.(ev ′, ev) C tr ∧ id(ev ′) 6= resp(ev ′)

ρi(SRPi)
=====⇒ rreqi.(i, (ev ′, ev)) C tr

ρi(CORi)
======⇒ linkj,i.(i, (ev ′, ev)) C tr for some identifier j 6= i

ρj(CORj)
======⇒ ddecj .(i, (i, (ev ′, ev))) C tr ∨ fwdj .(i, (i, (ev ′, ev))) C tr ∨ rdecj .(i, (i, (ev ′, ev))) C tr

=⇒ by Lemma 3 (a) and Lemma 3 (c)

rdecj .(i, (i, (ev ′, ev))) C tr

ρj(SRPj)
======⇒ rtrspj .(i, (ev ′, ev)) C tr (†)

(∗)
=⇒ rtrspj .(i, (ev ′, ev)) C tr � α(ρj(DECj(∅))) ∧ tr � α(ρj(DECj(∅))) ∈ traces(ρj(DECj(∅)))
(∗∗)
=⇒ by definition of DECj(∅)

rereqj .ev ′ C tr � α(ρj(DECj(∅))) ∧ (ev = ev ′ ∨ ev = dummyev ′)

=⇒ by the preconditions ev ∈ CE \DUM and dummyev ′ ∈ DUM
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rereqj .ev ′ C tr � α(ρj(DECj(∅))) ∧ ev = ev ′ (‡)
=⇒ rereqj .ev C tr

ρj(SRPj)
======⇒ rreqj .(j, ev) C tr

ρj(CORj)
======⇒ linkk,j .(j, ev) C tr for some identifier k 6= j

ρk(CORk)
======⇒ ddeck.(j, (j, ev)) C tr ∨ fwdk.(j, (j, ev)) C tr ∨ rdeck.(j, (j, ev)) C tr

=⇒ by Lemma 3 (b) and Lemma 3 (c)

ddeck.(j, (j, ev)) C tr

ρk(SRPk)
======⇒ rtreqk.(j, ev) C tr

(∗)
=⇒ rtreqk.(j, ev) C tr � α(ρk(DELk)) ∧ tr � α(ρk(DELk)) ∈ traces(ρk(DELk))

=⇒ by definition of DELk

j = resp(ev)

=⇒ with rtrspj .(i, (ev ′, ev)) C tr from (†) above, ev = ev ′ from (‡) above,
and precondition i = id(ev)

rtrspresp(ev).(id(ev), (ev , ev)) C tr

Lemma 6. Let trace tr ∈ traces(SI), identifier i ∈ Id, and events ev , ev ′ ∈ CE \ DUM with
ev ⊗ ev ′ be given. Then at least one of the following holds:
• edeci.(ev , ev) 6 tr and for all identifiers j ∈ Id, rtrspi.(j, (ev , ev)) 6 tr , or
• edeci.(ev ′, ev ′) 6 tr and for all identifiers j ∈ Id, rtrspi.(j, (ev ′, ev ′)) 6 tr .

Proof. Let trace tr ∈ traces(SI), identifier i ∈ Id , and events ev , ev ′ ∈ CE \DUM with ev ⊗ ev ′

be arbitrary but fixed. Let Dx :={edeci.(x, x), rtrspi.(j, x, x) | j ∈ Id} for all x ∈ {ev , ev ′}. We
show that tr � Dev = 〈 〉 or tr � Dev ′ = 〈 〉 holds, which is equivalent to (tr � Dev 6= 〈 〉) =⇒ (tr �
Dev ′ = 〈 〉). Thus, we assume tr � Dev 6= 〈 〉 and show tr � Dev ′ = 〈 〉.

tr � Dev 6= 〈 〉
⇐⇒ ∃e ∈ Dev .(e C tr)

(∗)
=⇒ e C tr � α(ρi(DECi(∅))) ∧ tr � α(ρi(DECi(∅))) ∈ traces(ρi(DECi(∅)))

⇐⇒ with trdec := tr � α(ρi(DECi(∅)))
e C trdec ∧ trdec ∈ traces(ρi(DECi(∅)))

(a)
=⇒ e C trdec ∧ trdec ∈ traces(ρi(DECi(∅))) ∧ e /∈ Dev ′

=⇒ without loss of generality

tr � α(ρi(DECi(∅))) = s1.〈e〉.s2 ∧ s1 � Dev ′ = 〈 〉
(b)

=⇒ ∃q ∈ 2CE .(ev ∈ q ∧ ρi(DECi(∅)) /(s1.〈e〉) = ρi(DECi(q)))

=⇒ by Lemma 1 (e)

s2 ∈ traces(ρi(DECi(q))) ∧ ev ∈ q
(c)

=⇒ s2 � Dev ′ = 〈 〉

=⇒ with s1 � Dev ′ = 〈 〉 and e /∈ Dev ′ from above

trdec � Dev ′ = (s1.〈e〉.s2) � Dev ′ = 〈 〉
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=⇒ by preconditions Dev ′ ⊆ α(ρi(DECi(∅))) and trdec = tr � α(ρi(DECi(∅)))
tr � Dev ′ = 〈 〉

Below, we prove the correctness of the implications labeled (a), (b), and (c) above.

(a) We show that e /∈ Dev ′ follows from e C trdec ∧ trdec ∈ traces(ρi(DECi(∅))).

e C trdec ∧ trdec ∈ traces(ρi(DECi(∅)))

=⇒ by definition of DECi(∅)) and the preconditions e ∈ Dev and ev /∈ DUM

∃q ∈ 2CE .(ev /∈ conf (q))

=⇒ by definition of conf [1, page 12]

¬(ev ⊗ ev)

=⇒ by precondition ev ⊗ ev ′

ev 6= ev ′

=⇒ by definition of Dev ′

e /∈ Dev ′

(b) We show that there exists a state q ∈ 2CE with ev ∈ q such that ρi(DECi(∅)) /(s1.〈e〉) =
ρi(DECi(q)) holds. By definition of ρi(DECi(∅)), this process only engages in e (recall firstly
that e must be one of edeci.(ev , ev) and rtrspi.(j, ev , ev) for some j ∈ Id , and secondly that
ev /∈ DUM ) if it afterwards immediately adds ev to its previously active state, say q ′ ∈ 2CE ,
and then behaves as ρi(DECi(q)) for q = q ′ ∪ {ev}.

(c) We show by induction over the length of traces s that for all states q ′ ∈ 2CE with ev ∈ q ′,
it holds that s ∈ traces(ρi(DECi(q

′))) implies s � Dev ′ = 〈 〉.
base case (|s| ≤ 1): By definition of DECi(q

′), events from Dev ′ cannot be contained in such
a short trace s.

step case (s = s1.s2 for |s1| = 2): For all q ′ ∈ 2CE , the definition of DECi(q
′) gives:

– An event e ′ ∈ Dev ′ cannot be contained in s1 because of the definition of conf [1,
page 12] and the precondition ev ′ ⊗ ev ; hence, we have s1 � Dev ′ = 〈 〉.

– DECi(q
′) / s1 = DECi(q

′′) for q ′′ ⊇ q ′; hence, the induction hypothesis can be
applied on q ′′ and s2 to obtain s2 � Dev ′ = 〈 〉.

It follows that s � Dev ′ = 〈 〉.

Based on the preceding lemmas and the auxiliary definition, we can now conduct the proof
that the controlled system defined in [1, Section 5] enforces the Chinese Wall policy, which it is
instantiated to enforce.

Proof of Theorem 1. We show that SYSTEMsatChW holds. Substituting the definitions of sat
and ChW, this is equivalent to proving that for all traces tr ∈ traces(SYSTEM) there do not exist
events ev1, ev2 ∈ CE such that ev1, ev2 C tr and ev1 ⊗ ev2 hold.

We conduct the proof by contradiction and assume that SYSTEMsatChW does not hold.
It follows that there exist a trace tr ∈ traces(SYSTEM) and events ev1, ev2 ∈ CE such that
ev1, ev2 C tr , and ev1 ⊗ ev2 hold true. Since events ev1 and ev2 are in conflict, they cannot be
dummy events (by definition of dummy events [1, page 11]). Secondly, the responsible node for
ev1 and ev2 must be the same, i.e., resp(ev1) = resp(ev2) (by the definition of resp [1, page 12]).
Let k := resp(ev1) be this responsible node.
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In the following, the process SI (see Definition 1 (d)) denotes the instantiated service automata
framework with all CSP hiding operations removed and the internal channels renamed to not
introduce additional synchronization with the removal of hiding. We assume, without loss
of generality, that the service and data providers PROVi do not make use of local policy-
internal channels and the renamed channels either (if they would, we could choose a different
renaming). Then by Lemma 2, we obtain SI \ HS = SYSTEM, where the hiding set HS is
defined in Definition 1 (c). It follows that there must be a trace tr ′ ∈ traces(SI) such that
tr ′ � α(SYSTEM) = tr . Particularly, we therefore have ev1, ev2 C tr ′.

Applying Lemma 5 for each event ev ∈ {ev1, ev2}, we get that in both cases either event
edeck.(ev , ev) or event rtrspk.(id(ev), ev , ev) is contained in tr ′. This contradicts Lemma 6, which
states that this can only hold for at most one of ev1 and ev2. Consequently, the assumption that
SYSTEMsatChW does not hold leads to a contradiction and, thus, cannot be true. Therefore,
SYSTEMsatChW holds.
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