Addendum to "Service Automata"
 - formal proofs -

Richard Gay, Heiko Mantel, Barbara Sprick
Department of Computer Science, TU Darmstadt, Germany
\{gay, mantel, sprick\}@mais.informatik.tu-darmstadt.de

November 16, 2011

Abstract

This document contains the formal proof for Theorem 1 in the article "Service Automata" [1] (Section 2) and preliminaries for the formalism (Section 1).

1 Preliminaries

In the proof, we denote the length of a sequence s by $|s|$, and the projection of a sequence s to an alphabet E of events by $s \upharpoonright E$. As a shorthand, we write $e_{1}, e_{2} \triangleleft t$ for $e_{1} \triangleleft t$ and $e_{2} \triangleleft t$.

1.1 A Primer to Hoare's Communicating Sequential Processes

We briefly recall the sublanguage of Hoare's Communicating Sequential Processes (CSP) used in this article. For a proper introduction, we refer to [2].

A process P is a pair $(\alpha(P), \operatorname{traces}(P))$ consisting of a set of events and a nonempty, prefix-closed set of finite sequences over $\alpha(P)$. The alphabet $\alpha(P)$ contains all events in which P could in principle engage. The set of possible traces traces $(P) \subseteq(\alpha(P))^{*}$ contains all sequences of events that the process could in principle perform. We use \rangle to denote the empty sequence, $\langle e\rangle$ to denote the trace consisting of the single event e, and s.t to denote the concatenation of two traces s and t. That an event e occurs in a trace t is denoted by $e \triangleleft t$.

The CSP process expression STOP $_{E}$ specifies a process with alphabet E and a set of traces containing only \rangle. A process that performs event e and then behaves according to the process expression P, is specified by $e \rightarrow P$. External and internal choice between P and Q are specified by $P \square Q$ and $P \sqcap Q$, respectively. They model that the process behaves according to either P or Q. The parallel composition of P and Q is specified by $P \| Q$. The parallel processes have to synchronize on the occurrences of all events that their alphabets have in common. The process $P \backslash E$ behaves as P but all events in the set E are hidden by removing them from the process' alphabet and possible traces.

The binary operators \square, \sqcap and $\|$ are lifted to n-ary operators over non-empty finite index sets. For instance, $\square_{x \in X} P(x)$ equals $P(a)$ if $X=\{a\}$ and equals $P(a) \square\left(\square_{x \in X \backslash\{a\}} P(x)\right)$ if $a \in X$ and X contains at least two elements.

We use structured events of the form c. m to model the communication of a message m on a channel c. In a process expression we write $c!m$ instead of $c . m$ in order to indicate that message m is sent on c , and use c ? $x: M$ for receiving some message $m \in M$ on channel c while instantiating
the variable x with m. Effectively, c ? $x: M \rightarrow P(x)$ corresponds to an external choice on the events in $\{c . m \mid m \in M\}$ such that the computation continues according to $P(m)$.

A process definition NAME $\stackrel{\text { def }}{=}$ P declares a new process name NAME and defines that NAME models a process whose traces are given by the process expression P and whose alphabet equals α. We omit the subscript α in a process definition if the alphabet of NAME shall equal $\alpha(P)$. Process names can be used as subexpressions within process expressions, thus allowing for recursion.

Properties of CSP processes are modeled by unary predicates on traces. We say that a unary predicate φ on traces is satisfied by a process P (denoted by P sat φ) if and only if $\varphi(t)$ holds for each $t \in \operatorname{traces}(P)$.

In the proofs, we denote by P / t the process P after engaging in the sequence of events t.

1.2 Semantics of CSP

The following lists the trace semantics for the CSP constructs used in the paper.

- for every set E of events, $\alpha\left(\mathrm{STOP}_{E}\right)=E$ and $\operatorname{traces}\left(\mathrm{STOP}_{E}\right)=\{\langle \rangle\}$;
- for process P and event $e \in \alpha(P), \alpha(e \rightarrow P)=\alpha(P)$ and $\operatorname{traces}(e \rightarrow P)=\{\langle \rangle\} \cup\{\langle e\rangle$.tr \mid tr $\in \operatorname{traces}(P)\}$;
- for process P, channel c, and message m, if c. $m \in \alpha(P)$, then $\alpha(\mathrm{c}!m \rightarrow P)=\alpha(P)$ and $\operatorname{traces}(\mathrm{c}!m \rightarrow P)=\{\langle \rangle\} \cup\{\langle\mathrm{c} . m\rangle . \operatorname{tr} \mid \operatorname{tr} \in \operatorname{traces}(P)\} ;$
- for channel c, set M, and process expression $P(x)$ parametric in $x \in M$, if $\alpha(P(m))=$ $\alpha\left(P\left(m^{\prime}\right)\right)$ and $\mathrm{c} . m \in \alpha(P(m))$ holds for all $m, m^{\prime} \in M$, then $\alpha(c ? x: M \rightarrow P(x))=\alpha(P(m))$ for any $m \in M$ and $\operatorname{traces}(\mathrm{c} ? x: M \rightarrow P(x))=\{\langle \rangle\} \cup\{\langle\mathrm{c} . x\rangle . \operatorname{tr} \mid x \in M \wedge \operatorname{tr} \in \operatorname{traces}(P(x))\}$;
- for processes P and Q with $\alpha(P)=\alpha(Q), \alpha(P \square Q)=\alpha(P)=\alpha(Q)$ and $\operatorname{traces}(P \square Q)=$ $\operatorname{traces}(P) \cup \operatorname{traces}(Q)$;
- for a non-empty finite set X and a process expression $P(x)$ parametric in x, if $\alpha(P(x))=$ $\alpha(P(y))$ for all $x, y \in X$, then $\alpha\left(\square_{x \in X} P(x)\right)=\alpha(P(y))$ for any $y \in X$ and $\operatorname{traces}\left(\square_{x \in X} P(x)\right)=$ $\bigcup_{x \in X} \operatorname{traces}(P(x))$;
- for processes P and $Q, \alpha(P \| Q)=\alpha(P) \cup \alpha(Q)$ and $\operatorname{traces}(P \| Q)=\left\{t \in \alpha(P \| Q)^{*} \mid t \uparrow\right.$ $\alpha(P) \in \operatorname{traces}(P) \wedge t \upharpoonright \alpha(Q) \in \operatorname{traces}(Q)\} ;$
- for process P and set E of events, $\alpha(P \backslash E)=\alpha(P) \backslash E$ and $\operatorname{traces}(P \backslash E)=\{t \upharpoonright \alpha(P \backslash E) \mid$ $t \in \operatorname{traces}(P)\}$.
In the trace semantics, we define two processes P and Q to be equal (written $P=Q$), if and only if $\alpha(P)=\alpha(Q)$ and traces $(P)=\operatorname{traces}(Q)$ holds. The following recapitulates some basic properties of CSP processes provided by Hoare in [2].

Lemma 1. Let P, Q be CSP processes, E, E^{\prime} be sets of events, tr be a sequence of events, $e \in \alpha(P)$ be an event, and f be an injective alphabet renaming function. Then
(a) $f(P \| Q)=f(P) \| f(Q)$
[2, page 65 (L3)]
(b) $P \backslash\left(E \cup E^{\prime}\right)=(P \backslash E) \backslash E^{\prime}$
[2, page 92 (L2)]
(c) $(P \| Q) \backslash E=(P \backslash E) \|(Q \backslash E)$ if $\alpha(P) \cap \alpha(Q) \cap E=\emptyset$
[2, page 92 (L6)]
(d) $f(P \backslash E)=f(P) \backslash f(E)$
[2, page 92 (L7)]
(e) $P /\left(s_{1} \cdot s_{2}\right)=\left(P / s_{1}\right) / s_{2}$
[2, page 32 (L2)]
(f) $(e \rightarrow P) /\langle e\rangle . \operatorname{tr}=P / \operatorname{tr}$
[2, page $32(L 2+L 3)]$
(g) $(P \square Q) / \operatorname{tr}=P / \operatorname{tr}$ if $\operatorname{tr} \in \operatorname{traces}(P) \backslash \operatorname{traces}(Q)$ and $(P \square Q) / \operatorname{tr}=Q / \operatorname{tr}$ if $\operatorname{tr} \in \operatorname{traces}(Q) \backslash \operatorname{traces}(P)$
[2, page 88 (L2)]

2 Proof of Theorem 1

In this section, we give a formal proof for [1, Theorem 1], which shows that the service automata framework SYSTEM soundly enforces the Chinese Wall security policy.

Theorem 1. SYSTEM sat $C h W$.

The proof for the theorem can be found at the end of this section on page 9 . To increase the readability of the proof, we show major steps of the proof in separate lemmas:

- Lemma 2 states that the hiding in the definitions of the service automata and the local policies can be moved outside of the controlled system, if local channels are renamed to be unique. Definition 1 specifies the renaming and the controlled system without hiding. This change of the hiding simplifies the reasoning about the events that are hidden in SYSTEM.
- Lemma 3 states that certain events cannot occur in traces of the instantiated service automata: (a) decisions are not sent on channel ddec, (b) requests are not sent on channel rdec, (c) requests and decisions are not forwarded, (d) remote decisions are not approved for locally decidable events, and (e) local enforcement decisions are not sent to an enforcer for events that have a remote responsible node.
- Lemma 4 states that an enforcer performs a critical event only after this enforcer has received a corresponding decision.
- Lemma 5 states that every performed critical event must have ultimately been permitted by its responsible node.
- Lemma 6 states that no decision-making component permits two conflicting events in a single trace.
In the remainder of this section, we abbreviate $\operatorname{COR}_{i}\left(C E_{i}, E D_{i}\right)$ by $\operatorname{COR}_{i}, \operatorname{INT}_{i}\left(\alpha\left(\mathrm{PROV}_{i}\right), C E_{i}\right)$ by INT_{i}, and $\operatorname{REPLACE}\left(C E_{i}\right)$ by $\operatorname{REPLACE}_{i}$. By $D U M$, we denote the set $\left\{d u m m y_{e v} \mid e v \in C E\right\}$ of all dummy events.

Definition 1. (a) Let $i \in I d$ be an identifier. We define the set of events hidden by the service automaton at node i as

$$
H_{i}:=\left\{\begin{array}{l|l}
\text { sync. } \checkmark, \text { icpt.ev, enf.ed, Ireq.ev, rreq. } d r, \text { fwd. }(k, d r), & \begin{array}{l}
e v \in C E_{i}, e d \in E D, \\
\text { edec.ed, appv.ed, ddec. }(k, d r), \text { rdec. }(k, d r)
\end{array} \\
d r \in D R, k \in I d \backslash\{i\}
\end{array}\right\} .
$$

(b) For all identifiers $i \in I d$, let $\rho_{i}: E_{i} \rightarrow E_{i} \cup\left\{\mathrm{c}_{i} \cdot m \mid\right.$ c. $\left.m \in H_{i} \cup H_{i}^{\text {pol }}\right\}$ be a renaming function on $E_{i}:=\alpha\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \cup \alpha\left(\operatorname{REPLACE}_{i}\right) \cup \alpha\left(\mathrm{COR}_{i}\right) \cup \alpha\left(\mathrm{DEL}_{i}\right) \cup \alpha\left(\mathrm{DEC}_{i}(\emptyset)\right) \cup \alpha\left(\mathrm{SRP}_{i}\right)$ such that

$$
\rho_{i}(e)= \begin{cases}\mathrm{c}_{i} \cdot m & \text { if } e \in H_{i} \cup H_{i}^{\text {pol }} \text { with } e=\mathrm{c} . m \\ e & \text { otherwise }\end{cases}
$$

Note that H_{i}^{pol} is defined in [1, page 12]. We lift the renaming functions from events to processes as in [2, Section 2.6], by applying the renaming to all events occurring in the respective process.
(c) The set of all renamed hidden events is defined as $H S:=\bigcup_{i \in I d} \rho_{i}\left(H_{i} \cup H_{i}^{\mathrm{pol}}\right)$,
(d) The system with internal events, SI , is defined as

$$
\mathrm{SI} \stackrel{\text { def }}{=} \|_{i \in I d}\binom{\rho_{i}\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \| \rho_{i}\left(\operatorname{REPLACE}_{i}\right)}{\left\|\rho_{i}\left(\mathrm{COR}_{i}\right)\right\| \rho_{i}\left(\mathrm{DEL}_{i}\right)\left\|\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right\| \rho_{i}\left(\mathrm{SRP}_{i}\right)} .
$$

Lemma 2. If $\alpha\left(\mathrm{PROV}_{i}\right) \cap\left(H S \cup H_{i}^{\mathrm{pol}}\right)=\emptyset$ holds for all identifiers $i \in I d$, then $\mathrm{SI} \backslash H S=$ SYSTEM.
Proof. For all identifiers $j \in I d$, the definitions of all processes $P \in\left\{\mathrm{COR}_{i}, \mathrm{DEL}_{i}, \mathrm{DEC}_{i}, \mathrm{SRP}_{i} \mid i \in\right.$ $I d \backslash\{j\}\}$ ensure $\alpha(P) \cap \rho_{j}\left(H_{j} \cup H_{j}^{\mathrm{pol}}\right)=\emptyset$. The precondition $\alpha\left(\mathrm{PROV}_{i}\right) \cap\left(H S \cup H_{i}^{\mathrm{pol}}\right)=\emptyset$ together with $C E_{i} \subseteq \alpha\left(\mathrm{PROV}_{i}\right)$ [1, page 11] and the definitions of the processes $\mathrm{REPLACE}_{i}$ and INT_{i} implies $\alpha(Q) \cap \rho_{j}\left(H_{j} \cup H_{j}^{\mathrm{pol}}\right)=\emptyset$ for all $Q \in\left\{\operatorname{REPLACE}_{i},\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i} \mid i \in I d \backslash\{j\}\right\}$.

We denote the above two observations as (\dagger) below.
$\mathrm{SI} \backslash H S=$ by Definition 1 (d) and Lemma 1 (a)

$$
\left(\begin{array}{c}
\left.\| \rho_{i \in I d}\binom{\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \| \mathrm{REPLACE}_{i}}{\left\|\mathrm{COR}_{i}\right\| \mathrm{DEL}_{i}\left\|\mathrm{DEC}_{i}(\emptyset)\right\| \mathrm{SRP}_{i}}\right) \backslash H S
\end{array}\right.
$$

$=$ by Definition $1(\mathrm{c})$, Lemma $1(\mathrm{c})$, and observations (\dagger)

$$
\|_{i \in I d}\left(\rho_{i}\binom{\left(\left(\operatorname{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \| \mathrm{REPLACE}_{i}}{\left\|\mathrm{COR}_{i}\right\|\left(\mathrm{DEL}_{i}\left\|\mathrm{DEC}_{i}(\emptyset)\right\| \mathrm{SRP}_{i}\right)} \backslash \rho_{i}\left(H_{i} \cup H_{i}^{\mathrm{pol}}\right)\right)
$$

$=$ by Lemma $1(\mathrm{~d})$

$$
\|_{i \in I d} \rho_{i}\left(\binom{\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \| \mathrm{REPLACE}_{i}}{\left\|\mathrm{COR}_{i}\right\|\left(\mathrm{DEL}_{i}\left\|\mathrm{DEC}_{i}(\emptyset)\right\| \mathrm{SRP}_{i}\right)} \backslash\left(H_{i} \cup H_{i}^{\mathrm{pol}}\right)\right)
$$

$=$ by Definition $1(\mathrm{~b})$, which gives $\rho_{i}(e)=e$ for all $e \notin H_{i} \cup H_{i}^{\text {pol }}$
$\|_{i \in I d}\binom{\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right) \| \mathrm{REPLACE}_{i}}{\left\|\mathrm{COR}_{i}\right\|\left(\mathrm{DEL}_{i}\left\|\mathrm{DEC}_{i}(\emptyset)\right\| \mathrm{SRP}_{i}\right)} \backslash\left(H_{i} \cup H_{i}^{\mathrm{pol}}\right)$
$=$ by Lemma $1(\mathrm{~b})$; by precondition $\alpha\left(\mathrm{PROV}_{i}\right) \cap H_{i}^{\text {pol }}=\emptyset$;
by the fact that for all $i \in I d$ and $P \in\left\{\mathrm{INT}_{i}, \operatorname{REPLACE}_{i}, \mathrm{COR}_{i}\right\}, \alpha(P) \cap H_{i}^{\mathrm{pol}}=\emptyset$ holds according to the definition of P; and by definition of $\mathrm{POL}_{i}[1$, page 12]

$$
\begin{aligned}
& \| \\
= & \left(\left(\left(\mathrm{PROV}_{i} \| \mathrm{INT}_{i}\right) \backslash C E_{i}\right)\left\|\mathrm{POL}_{i}\right\| \mathrm{COR}_{i} \| \mathrm{REPLACE}_{i}\right) \backslash H_{i} \\
= & \|_{i \in I d} \mathrm{SA}_{i}\left(\mathrm{PROV}_{i}, C E_{i}, \mathrm{POL}_{i}, E D_{i}, \mathrm{REPLACE}_{i}\right)=\text { SYSTEM }
\end{aligned}
$$

Remark 1. In the following, we repeatedly make use of the following patterns of reasoning.

- Let $t r \in \operatorname{traces}(\mathrm{SI})$ be a trace, P, Q be processes such that $\mathrm{SI}=P \| Q$ holds, and $e \in \alpha(Q)$ be an event. Then from $e \triangleleft \operatorname{tr}$ we can follow that $e \triangleleft \operatorname{tr} \upharpoonright \alpha(Q) \wedge \operatorname{tr} \upharpoonright \alpha(Q) \in \operatorname{traces}(Q)$. We indicate this reasoning by $\xlongequal{(*)}$.
- Let Q be a process, $e \in \alpha(Q)$ be an event, tr_{Q} be a trace, and $E \subseteq \alpha(Q)$ be the set of immediate predecessors of e in process Q. Then from $e \triangleleft t r_{Q} \wedge t r_{Q} \in \operatorname{traces}(Q)$ we can conclude that $\bigvee_{e^{\prime} \in E}\left(e^{\prime} \triangleleft t_{Q}\right)$ holds. We use $\stackrel{(* *)}{\Longrightarrow}$ to indicate this reasoning.
- We often combine the above steps in the form $e \triangleleft \operatorname{tr} \stackrel{(*)}{\Longrightarrow} e \triangleleft \operatorname{tr}_{Q} \wedge \operatorname{tr}_{Q} \in \operatorname{traces}(Q) \xrightarrow{(* *)}$ $\bigvee_{e^{\prime} \in E}\left(e^{\prime} \triangleleft \operatorname{tr}_{Q}\right) \Longrightarrow \bigvee_{e^{\prime} \in E}\left(e^{\prime} \triangleleft \operatorname{tr}\right)$ for $\operatorname{tr}{ }_{Q}=\operatorname{tr} \upharpoonright \alpha(Q)$. The last implication trivially holds. In the remainder of this section, we abbreviate such chains of reasoning by $e \triangleleft t r \stackrel{Q}{\Rightarrow} \bigvee_{e^{\prime} \in E}\left(e^{\prime} \triangleleft t r\right)$.

Lemma 3. Let $C E_{i}^{l d}:=\left\{e v \in C E_{i} \mid i d(e v)=r e s p(e v)\right\}$ be the set of locally decidable critical events at node $i \in I d$. Then for all traces $t r \in \operatorname{SI}$ and identifiers $i, j, k \in I d$ with $j \neq i$, the following holds:
(a) For all decisions ed $\in E D$, it holds that $\operatorname{ddec}_{i} \cdot(j,(k, e d)) \notin t r$.
(b) For all events ev $\in C E$, it holds that $\operatorname{rdec}_{i} \cdot(j,(k, e v)) \notin t r$.
(c) For all events and decisions $x \in C E \cup E D$, it holds that $\mathrm{fwd}_{j} .(i,(i, x)) \notin t r$.
(d) For all decisions ed $\in C E_{i}^{l d} \times C E_{i}$, it holds that appv_{i}.ed \nrightarrow tr.
(e) For all decisions ed $\in E D_{i} \backslash\left(C E_{i}^{l d} \times C E_{i}\right)$ it holds that edec $_{i}$.ed $\nrightarrow t r$.

Proof. Let the trace $t r \in \operatorname{traces}(\mathrm{SI})$ be arbitrary but fixed.
(a) Let identifiers $i, j, k \in I d$ with $i \neq j$ and decision $e d \in E D$ be arbitrary but fixed. We show the claim by contradiction and assume $\operatorname{ddec}_{i} .(j,(k, e d)) \triangleleft t r$.

$$
\begin{aligned}
\xlongequal{(*)} & \operatorname{ddec}_{i} \cdot(j,(k, e d)) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{SRP}_{i}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{SRP}_{i}\right)\right) \in \operatorname{traces}\left(\rho_{i}\left(\mathrm{SRP}_{i}\right)\right) \\
\Longrightarrow & \text { by definition of } \mathrm{SRP}_{i} \\
& (k, e d) \in I d \times C E \\
\Longrightarrow & \text { by the precondition } I d \times C E \cap I d \times E D=\emptyset \text { for SRP [1, page } 9] \\
& (k, e d) \notin I d \times E D
\end{aligned}
$$

This contradicts the preconditions $k \in I d$ and $e d \in E D$. Hence, the assumption of $\operatorname{ddec}_{i} \cdot(j,(k, e d)) \triangleleft t r$ is wrong and $\operatorname{ddec}_{i} \cdot(j,(k, e d)) \nrightarrow t r$ holds.
(b) The proof goes along the lines of the one for the previous part, with $E D$ exchanged by $C E$ and ddec exchanged by rdec.
(c) We show the claim by contradiction and assume that there exist $x \in C E \cup E D$ and $i, j \in I d$ with $j \neq i$, such that fwd $_{j} .(i,(i, x)) \triangleleft t r$ holds.

$$
\begin{aligned}
& \xrightarrow{\rho_{j}\left(\mathrm{SRP}_{j}\right)} \operatorname{rreq}_{j} .(i, x) \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{COR}_{j}\right)} \operatorname{link}_{k, j} \cdot(i, x) \triangleleft t r \text { for some identifier } k \neq j \\
& \xrightarrow{\rho_{k}\left(\mathrm{COR}_{k}\right)} \operatorname{ddec}_{k} \cdot(j,(i, x)) \triangleleft \operatorname{tr} \vee \operatorname{rdec}_{k} \cdot(j,(i, x)) \triangleleft t r \vee \operatorname{fwd}_{k} .(j,(i, x)) \triangleleft t r \\
& \xrightarrow{(*)} \operatorname{ddec}_{k} \cdot(j,(i, x)) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \in \operatorname{traces}\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \\
& \vee \operatorname{rdec}_{k} \cdot(j,(i, x)) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \in \operatorname{traces}\left(\rho_{k}\left(\operatorname{SRP}_{k}\right)\right) \\
& \vee \operatorname{fwd}_{k} \cdot(j,(i, x)) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{SRP}_{k}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{SRP}_{k}\right)\right) \in \operatorname{traces}\left(\rho_{k}\left(\mathrm{SRP}_{k}\right)\right) \\
& \Longrightarrow \text { by definition of } \mathrm{SRP}_{k} \\
& j=n x t(k, i) \\
& \Longrightarrow \text { by definition of } n x t \text { [1, page 12] } \\
& j=n x t(k, i)=i
\end{aligned}
$$

The last equation contradicts the initial assumption of $i \neq j$. Hence, the assumption $\operatorname{fwd}_{j} .(i,(i, x)) \triangleleft \operatorname{tr}$ cannot hold, i.e., $\operatorname{fwd}_{j} .(i,(i, x)) \notin \operatorname{tr}$ holds for all $j \neq i$.
(d) We show the claim by contradiction and assume there exists an identifier $i \in I d$ and a decision $e d=\left(e v, e v^{\prime}\right) \in C E_{i}^{\text {ld }} \times C E_{i}$ such that appv_{i}.ed $\triangleleft \operatorname{tr}$ holds.

$$
\begin{aligned}
& \xlongequal{\rho_{i}\left(\mathrm{SRP}_{i}\right)} \operatorname{rreq}_{i} .(i, e d) \triangleleft t r \xrightarrow{\rho_{i}\left(\mathrm{COR}_{i}\right)} \operatorname{link}_{j, i} .(i, e d) \triangleleft t r \text { for some identifier } j \neq i \\
& \xrightarrow{\rho_{j}\left(\operatorname{COR}_{j}\right)} \operatorname{ddec}_{j} .(i,(i, e d)) \triangleleft \operatorname{tr} \vee \operatorname{fwd}_{j} .(i,(i, e d)) \triangleleft t r \vee \operatorname{rdec}_{j} .(i,(i, e d)) \triangleleft t r \\
& \Longrightarrow \text { by Lemma } 3 \text { (a) and Lemma } 3 \text { (c) } \\
& \operatorname{rdec}_{j} .(i,(i, e d)) \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{SRP}_{j}\right)} \operatorname{rtrsp}_{j} .(i, e d) \triangleleft \operatorname{tr} \xlongequal{\rho_{j}\left(\mathrm{DEC}_{j}(\emptyset)\right)} \operatorname{rereq}_{j} . \operatorname{ev} \triangleleft \operatorname{tr} \xlongequal{\rho_{j}\left(\mathrm{SRP}_{j}\right)} \operatorname{rreq}_{j} \cdot(j, e v) \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{COR}_{j}\right)} \operatorname{link}_{k, j} .(j, e v) \triangleleft t r \text { for some identifier } k \neq j \\
& \xrightarrow{\rho_{k}\left(\operatorname{CoR}_{k}\right)} \operatorname{ddec}_{k} \cdot(j,(j, e v)) \triangleleft \operatorname{tr} \vee \operatorname{fwd}_{k} \cdot(j,(j, e v)) \triangleleft \operatorname{tr} \vee \operatorname{rdec}_{k} \cdot(j,(j, e v)) \triangleleft \operatorname{tr}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \text { by Lemma } 3 \text { (b) and Lemma } 3 \text { (c) } \\
& \operatorname{ddec}_{k} \cdot(j,(j, e v)) \triangleleft t r \\
& \xrightarrow{\rho_{k}\left(\operatorname{SRP}_{k}\right)} \operatorname{rtreq}_{k} \cdot(j, e v) \triangleleft t r \\
& \xrightarrow{(*)} \operatorname{rtreq}_{k} \cdot(j, e v) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \in \operatorname{traces}\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \\
& \Longrightarrow \text { by definition of } \mathrm{DEL}_{k} \text {, according to which rtreq. }(j, e v) \\
& \text { can only occur if } e v \in\left\{e v^{\prime} \in C E_{k} \mid k \neq \operatorname{resp}\left(e v^{\prime}\right)\right\} \text { holds } \\
& e v \in C E_{k} \wedge k \neq \operatorname{resp}(e v) \\
& \Longrightarrow \text { by definition of } i d \text { [1, page 11] } \\
& i d(e v) \neq \operatorname{resp}(e v) \\
& \Longrightarrow \text { by definition of } C E_{i}^{\text {ld }} \\
& e v \notin C E_{i}^{\text {ld }}
\end{aligned}
$$

The final consequence contradicts the initial assumption of $e d=\left(e v, e v^{\prime}\right) \in C E_{i}^{\mathrm{ld}} \times C E_{i}$. Hence, the assumption $\operatorname{appv}_{i} . e d \triangleleft t r$ is wrong and appv${ }_{i} . e d \nexists t r$ holds.
(e) Let identifier $i \in I d$ and decision $e d=\left(e v, e v^{\prime}\right) \in E D_{i} \backslash\left(C E_{i}^{\text {ld }} \times C E_{i}\right)$ be arbitrary but fixed. We show the claim by contradiction and assume $\operatorname{edec}_{i} . e d \triangleleft t r$ holds.

$$
\begin{aligned}
\stackrel{\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)}{\longrightarrow} & \text { lereq }_{i} . e v \triangleleft \operatorname{tr} \\
\stackrel{(*)}{\Longrightarrow} & \text { lereq }_{i} \cdot e v \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{DEL}_{i}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{DEL}_{i}\right)\right) \in \operatorname{traces}\left(\rho_{i}\left(\mathrm{DEL}_{i}\right)\right) \\
\Longrightarrow & \begin{array}{l}
\text { by definition of } \mathrm{DEL}_{i}, \text { according to which lereq.ev } \\
\\
\text { can only occur if } e v \in\left\{e v^{\prime} \in C E_{i} \mid i=\operatorname{resp}\left(e v^{\prime}\right)\right\}
\end{array} \\
& i=\operatorname{resp}(e v) \\
\Longrightarrow & \text { by the precondition that } e v \in C E_{i} \text { and by definition of } C E_{i}^{\text {ld }} \\
& e v \in C E_{i}^{\text {ld }}
\end{aligned}
$$

The final statement contradicts the precondition $e d=\left(e v, e v^{\prime}\right) \in E D_{i} \backslash\left(C E_{i}^{\mathrm{ld}} \times C E_{i}\right)$, from which ev $\notin C E_{i}^{\text {ld }}$ follows immediately.

Lemma 4. For all events ev $\in C E$ and traces $\operatorname{tr} \in \operatorname{traces}(\mathrm{SI})$ with $e v \triangleleft t r$, it holds that there exists an event $e v^{\prime} \in C E_{i d(e v)}$ with $\operatorname{enf}_{i d(e v)} .\left(e v^{\prime}, e v\right) \triangleleft t r$.

Proof. Let $e v \in C E$ be an event and $t r \in \operatorname{traces}(\mathrm{SI})$ be a trace with $e v \triangleleft t r$. Let $i:=i d(e v)$.
$\xrightarrow{(*)}$ with $e v \in C E_{i d(e v)}=C E_{i}$ by definition of $i d$ [1, page 11], $C E_{i} \subseteq \alpha\left(\operatorname{REPLACE}_{i}\right)$ by definition of $\operatorname{REPLACE}{ }_{i}=\operatorname{REPLACE}\left(C E_{i}\right)$ [1, page 8], and $\rho_{i}(e v)=e v$ according to Definition 1 (b)
$e v \triangleleft t r \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{REPLACE}_{i}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{REPLACE}_{i}\right)\right) \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{REPLACE}_{i}\right)\right)$
$\xrightarrow{(* *)}$ by the precondition that $C E_{i}$, defined in [1, page 11],
is disjoint from the set \{sync. \checkmark, enf. $\left.\left(e v^{\prime}, e v\right) \mid e v, e v^{\prime} \in C E_{i}\right\}$
$\operatorname{enf}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{REPLACE}_{i}\right)\right)$ for some event $e v^{\prime} \in C E_{i}$
\Longrightarrow with $i=i d(e v)$
$\operatorname{enf}_{i d(e v)} .\left(e v^{\prime}, e v\right) \triangleleft t r$

Note that the second implication holds, because we concretized the replacement sequences $E A$ as $C E_{i}$ (i.e., sequences of length 1 of critical events) in [1, page 12]. Therefore, a simplified equivalent specification of the replacer process is

$$
\operatorname{REPLACE}_{i}=\operatorname{enf} ?\left(e v^{\prime}, e v\right): C E_{i} \times C E_{i} \rightarrow e v \rightarrow \operatorname{sync}!\checkmark \rightarrow \operatorname{REPLACE}_{i}
$$

Lemma 5. Let ev $\in C E \backslash D U M$ be an event and $\operatorname{tr} \in \operatorname{traces}(\mathrm{SI})$ with $\mathrm{ev} \triangleleft \operatorname{tr}$ be a trace.
Then $\operatorname{edec}_{r e s p(e v)} .(e v, e v) \triangleleft t r$ or $\operatorname{rtrsp}_{r e s p(e v)} .(i d(e v),(e v, e v)) \triangleleft t r$ holds true.
Proof. Let ev $\in C E \backslash D U M$ be an event and $\operatorname{tr} \in \operatorname{traces}(\mathrm{SI})$ be a trace with $e v \triangleleft t r$. Let $i:=i d(e v)$.
\Longrightarrow by Lemma 4 $\operatorname{enf}_{i} .\left(e v^{\prime}, e v\right) \triangleleft t r$ for some event $e v^{\prime} \in C E_{i}$
$\xrightarrow{\rho_{i}\left(\operatorname{CoR}_{i}\right)} \operatorname{edec}_{i} .\left(e v^{\prime}, e v\right) \triangleleft t r \vee \operatorname{appv}_{i} .\left(e v^{\prime}, e v\right) \triangleleft t r$
\Longrightarrow by Lemma 3 (d) and Lemma 3 (e)
$\left(\operatorname{edec}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \wedge i d\left(e v^{\prime}\right)=\operatorname{resp}\left(e v^{\prime}\right)\right) \vee\left(\operatorname{appv}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \wedge i d\left(e v^{\prime}\right) \neq \operatorname{resp}\left(e v^{\prime}\right)\right)$
In the following, we show the claim for both disjuncts separately.
(a)

$$
\operatorname{edec}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \wedge i d\left(e v^{\prime}\right)=\operatorname{resp}\left(e v^{\prime}\right)
$$

$\xrightarrow{(*)} \operatorname{edec}_{i} \cdot\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right) \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right)$
\Longrightarrow by definition of $\mathrm{DEC}_{i}(\emptyset)$
$\operatorname{edec}_{i} .\left(e v^{\prime}, e v\right) \triangleleft t r \wedge\left(e v^{\prime}=e v \vee e v=d u m m y_{e v^{\prime}}\right)$
\Longrightarrow by the preconditions $e v \in C E \backslash D U M$ and dummy $y_{e v^{\prime}} \in D U M$
$\operatorname{edec}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \wedge e v=e v^{\prime}$
\Longrightarrow by the preconditions $i=i d(e v)$ and $i d\left(e v^{\prime}\right)=\operatorname{resp}\left(e v^{\prime}\right)$
$\operatorname{edec}_{\text {resp }(e v)} .(e v, e v) \triangleleft t r$
(b)

$$
\begin{aligned}
& \operatorname{appv}_{i} .\left(e v^{\prime}, e v\right) \triangleleft \operatorname{tr} \wedge i d\left(e v^{\prime}\right) \neq \operatorname{resp}\left(e v^{\prime}\right) \\
& \xrightarrow{\rho_{i}\left(\mathrm{SRP}_{i}\right)} \operatorname{rreq}_{i} \cdot\left(i,\left(e v^{\prime}, e v\right)\right) \triangleleft t r \\
& \xrightarrow{\rho_{i}\left(\mathrm{COR}_{i}\right)} \operatorname{link}_{j, i} .\left(i,\left(e v^{\prime}, e v\right)\right) \triangleleft t r \text { for some identifier } j \neq i \\
& \xrightarrow{\rho_{j}\left(\operatorname{COR}_{j}\right)} \operatorname{ddec}_{j} .\left(i,\left(i,\left(e v^{\prime}, e v\right)\right)\right) \triangleleft \operatorname{tr} \vee \operatorname{fwd}_{j} .\left(i,\left(i,\left(e v^{\prime}, e v\right)\right)\right) \triangleleft \operatorname{tr} \vee \operatorname{rdec}_{j} .\left(i,\left(i,\left(e v^{\prime}, e v\right)\right)\right) \triangleleft t r \\
& \Longrightarrow \text { by Lemma } 3 \text { (a) and Lemma } 3 \text { (c) } \\
& \operatorname{rdec}_{j} .\left(i,\left(i,\left(e v^{\prime}, e v\right)\right)\right) \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{SRP}_{j}\right)} \operatorname{rtrsp}_{j} .\left(i,\left(e v^{\prime}, e v\right)\right) \triangleleft t r \\
& \xrightarrow{(*)} \operatorname{rtrsp}_{j} .\left(i,\left(e v^{\prime}, e v\right)\right) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{j}\left(\operatorname{DEC}_{j}(\emptyset)\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{j}\left(\mathrm{DEC}_{j}(\emptyset)\right)\right) \in \operatorname{traces}\left(\rho_{j}\left(\mathrm{DEC}_{j}(\emptyset)\right)\right) \\
& \stackrel{(* *)}{\Longrightarrow} \text { by definition of } \text { DEC }_{j}(\emptyset) \\
& \text { rereq }_{j} . e v^{\prime} \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{j}\left(\operatorname{DEC}_{j}(\emptyset)\right)\right) \wedge\left(e v=e v^{\prime} \vee e v=d u m m y_{e v^{\prime}}\right) \\
& \Longrightarrow \text { by the preconditions } e v \in C E \backslash D U M \text { and } d u m m y_{e v^{\prime}} \in D U M
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rereq}_{j} \cdot e v^{\prime} \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{j}\left(\operatorname{DEC}_{j}(\emptyset)\right)\right) \wedge e v=e v^{\prime} \\
& \Longrightarrow \text { rereq }_{j} \text {.ev } \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{SRP}_{j}\right)} \operatorname{rreq}_{j} .(j, e v) \triangleleft t r \\
& \xrightarrow{\rho_{j}\left(\mathrm{COR}_{j}\right)} \operatorname{link}_{k, j} .(j, e v) \triangleleft t r \text { for some identifier } k \neq j \\
& \xrightarrow{\rho_{k}\left(\operatorname{CoR}_{k}\right)} \operatorname{ddec}_{k} \cdot(j,(j, e v)) \triangleleft \operatorname{tr} \vee \operatorname{fwd}_{k} \cdot(j,(j, e v)) \triangleleft \operatorname{tr} \vee \operatorname{rdec}_{k} \cdot(j,(j, e v)) \triangleleft t r \\
& \Longrightarrow \text { by Lemma } 3 \text { (b) and Lemma } 3 \text { (c) } \\
& \operatorname{ddec}_{k} .(j,(j, e v)) \triangleleft t r \\
& \xrightarrow{\rho_{k}\left(\mathrm{SRP}_{k}\right)} \operatorname{rtreq}_{k} .(j, e v) \triangleleft t r \\
& \xrightarrow{(*)} \operatorname{rtreq}_{k} \cdot(j, e v) \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \in \operatorname{traces}\left(\rho_{k}\left(\mathrm{DEL}_{k}\right)\right) \\
& \Longrightarrow \text { by definition of } \mathrm{DEL}_{k} \\
& j=\operatorname{resp}(e v) \\
& \Longrightarrow \text { with } \operatorname{rtrsp}_{j} .\left(i,\left(e v^{\prime}, e v\right)\right) \triangleleft t r \text { from }(\dagger) \text { above, } e v=e v^{\prime} \text { from }(\ddagger) \text { above, } \\
& \text { and precondition } i=i d(e v) \\
& \operatorname{rtrsp}_{r e s p(e v)} \cdot(i d(e v),(e v, e v)) \triangleleft t r
\end{aligned}
$$

Lemma 6. Let trace tr $\in \operatorname{traces}(\mathrm{SI})$, identifier $i \in I d$, and events $e v, e v^{\prime} \in C E \backslash D U M$ with $e v \otimes e v^{\prime}$ be given. Then at least one of the following holds:

- $\operatorname{edec}_{i} .(e v, e v) \nrightarrow t r$ and for all identifiers $j \in I d, \operatorname{rtrsp}_{i} \cdot(j,(e v, e v)) \nrightarrow t r$, or
- $\operatorname{edec}_{i} .\left(e v^{\prime}, e v^{\prime}\right) \nrightarrow t r$ and for all identifiers $j \in I d$, $\operatorname{rtrsp}_{i} \cdot\left(j,\left(e v^{\prime}, e v^{\prime}\right)\right) \nrightarrow t r$.

Proof. Let trace $\operatorname{tr} \in \operatorname{traces}(\mathrm{SI})$, identifier $i \in I d$, and events $e v, e v^{\prime} \in C E \backslash D U M$ with $e v \otimes e v^{\prime}$ be arbitrary but fixed. Let $D_{x}:=\left\{\operatorname{edec}_{i} .(x, x), \operatorname{rtrsp}_{i} .(j, x, x) \mid j \in I d\right\}$ for all $x \in\left\{e v, e v^{\prime}\right\}$. We show that $\operatorname{tr} \upharpoonright D_{e v}=\langle \rangle$ or $\operatorname{tr} \upharpoonright D_{e v^{\prime}}=\langle \rangle$ holds, which is equivalent to $\left(\operatorname{tr} \upharpoonright D_{e v} \neq\langle \rangle\right) \Longrightarrow(\operatorname{tr} \upharpoonright$ $\left.D_{e v^{\prime}}=\langle \rangle\right)$. Thus, we assume $\operatorname{tr} \upharpoonright D_{e v} \neq\langle \rangle$ and show $\operatorname{tr} \upharpoonright D_{e v^{\prime}}=\langle \rangle$.

$$
\begin{aligned}
& \operatorname{tr} \upharpoonright D_{e v} \neq\langle \rangle \\
& \Longleftrightarrow \exists e \in D_{e v} .(e \triangleleft t r) \\
& \stackrel{(*)}{\Longrightarrow} e \triangleleft \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \wedge \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \in \operatorname{traces}\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \\
& \Longleftrightarrow \text { with } t r_{\text {dec }}:=\operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right) \\
& e \triangleleft t r_{\mathrm{dec}} \wedge t r_{\mathrm{dec}} \in \operatorname{traces}\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \\
& \stackrel{(\mathrm{a})}{\Longrightarrow} e \triangleleft t r_{\mathrm{dec}} \wedge \operatorname{tr}_{\mathrm{dec}} \in \operatorname{traces}\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \wedge e \notin D_{e v^{\prime}} \\
& \Longrightarrow \text { without loss of generality } \\
& \operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right)=s_{1} \cdot\langle e\rangle . s_{2} \wedge s_{1} \upharpoonright D_{e v^{\prime}}=\langle \rangle \\
& \xrightarrow{(\mathrm{b})} \exists q \in 2^{C E} .\left(e v \in q \wedge \rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right) /\left(s_{1} \cdot\langle e\rangle\right)=\rho_{i}\left(\operatorname{DEC}_{i}(q)\right)\right) \\
& \Longrightarrow \text { by Lemma } 1 \text { (e) } \\
& s_{2} \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{DEC}_{i}(q)\right)\right) \wedge e v \in q \\
& \stackrel{(c)}{\Longrightarrow} s_{2} \upharpoonright D_{e v^{\prime}}=\langle \rangle \\
& \Longrightarrow \text { with } s_{1} \upharpoonright D_{e v^{\prime}}=\langle \rangle \text { and } e \notin D_{e v^{\prime}} \text { from above } \\
& t r_{\text {dec }} \upharpoonright D_{e v^{\prime}}=\left(s_{1} \cdot\langle e\rangle \cdot s_{2}\right) \upharpoonright D_{e v^{\prime}}=\langle \rangle
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow & \text { by preconditions } D_{e v^{\prime}} \subseteq \alpha\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \text { and } t r_{\mathrm{dec}}=\operatorname{tr} \upharpoonright \alpha\left(\rho_{i}\left(\mathrm{DEC}_{i}(\emptyset)\right)\right) \\
& \operatorname{tr} \upharpoonright D_{e v^{\prime}}=\langle \rangle
\end{aligned}
$$

Below, we prove the correctness of the implications labeled (a), (b), and (c) above.
(a) We show that $e \notin D_{e v^{\prime}}$ follows from $e \triangleleft t r_{\text {dec }} \wedge t r_{\text {dec }} \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right)$.
$e \triangleleft t r_{\text {dec }} \wedge t r_{\text {dec }} \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)\right)$
\Longrightarrow by definition of $\left.\operatorname{DEC}_{i}(\emptyset)\right)$ and the preconditions $e \in D_{e v}$ and $e v \notin D U M$
$\exists q \in 2^{C E} .(e v \notin \operatorname{conf}(q))$
\Longrightarrow by definition of conf [1, page 12]
$\neg(e v \otimes e v)$
\Longrightarrow by precondition $e v \otimes e v^{\prime}$
$e v \neq e v^{\prime}$
\Longrightarrow by definition of $D_{e v^{\prime}}$
$e \notin D_{e v^{\prime}}$
(b) We show that there exists a state $q \in 2^{C E}$ with $e v \in q$ such that $\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right) /\left(s_{1} \cdot\langle e\rangle\right)=$ $\rho_{i}\left(\operatorname{DEC}_{i}(q)\right)$ holds. By definition of $\rho_{i}\left(\operatorname{DEC}_{i}(\emptyset)\right)$, this process only engages in e (recall firstly that e must be one of $\operatorname{edec}_{i} .(e v, e v)$ and $\operatorname{rtrsp}_{i} .(j, e v, e v)$ for some $j \in I d$, and secondly that $e v \notin D U M)$ if it afterwards immediately adds $e v$ to its previously active state, say $q^{\prime} \in 2^{C E}$, and then behaves as $\rho_{i}\left(\operatorname{DEC}_{i}(q)\right)$ for $q=q^{\prime} \cup\{e v\}$.
(c) We show by induction over the length of traces s that for all states $q^{\prime} \in 2^{C E}$ with $e v \in q^{\prime}$, it holds that $s \in \operatorname{traces}\left(\rho_{i}\left(\operatorname{DEC}_{i}\left(q^{\prime}\right)\right)\right)$ implies $s \upharpoonright D_{e v^{\prime}}=\langle \rangle$.
base case $(|s| \leq 1)$: By definition of $\operatorname{DEC}_{i}\left(q^{\prime}\right)$, events from $D_{e v^{\prime}}$ cannot be contained in such a short trace s.
step case $\left(s=s_{1} . s_{2}\right.$ for $\left.\left|s_{1}\right|=2\right)$: For all $q^{\prime} \in 2^{C E}$, the definition of $\operatorname{DEC}_{i}\left(q^{\prime}\right)$ gives:

- An event $e^{\prime} \in D_{e v^{\prime}}$ cannot be contained in s_{1} because of the definition of conf [1, page 12] and the precondition $e v^{\prime} \otimes e v$; hence, we have $s_{1} \upharpoonright D_{e v^{\prime}}=\langle \rangle$.
- $\operatorname{DEC}_{i}\left(q^{\prime}\right) / s_{1}=\operatorname{DEC}_{i}\left(q^{\prime \prime}\right)$ for $q^{\prime \prime} \supseteq q^{\prime}$; hence, the induction hypothesis can be applied on $q^{\prime \prime}$ and s_{2} to obtain $s_{2} \upharpoonright D_{e v^{\prime}}=\langle \rangle$.
It follows that $s \upharpoonright D_{e v^{\prime}}=\langle \rangle$.
Based on the preceding lemmas and the auxiliary definition, we can now conduct the proof that the controlled system defined in [1, Section 5] enforces the Chinese Wall policy, which it is instantiated to enforce.

Proof of Theorem 1. We show that SYSTEM sat $C h W$ holds. Substituting the definitions of sat and $C h W$, this is equivalent to proving that for all traces $t r \in \operatorname{traces}$ (SYSTEM) there do not exist events $e v_{1}, e v_{2} \in C E$ such that $e v_{1}, e v_{2} \triangleleft t r$ and $e v_{1} \otimes e v_{2}$ hold.

We conduct the proof by contradiction and assume that SYSTEM sat $C h W$ does not hold. It follows that there exist a trace $t r \in \operatorname{traces}(\mathrm{SYSTEM})$ and events $e v_{1}, e v_{2} \in C E$ such that $e v_{1}, e v_{2} \triangleleft t r$, and $e v_{1} \otimes e v_{2}$ hold true. Since events $e v_{1}$ and $e v_{2}$ are in conflict, they cannot be dummy events (by definition of dummy events [1, page 11]). Secondly, the responsible node for $e v_{1}$ and $e v_{2}$ must be the same, i.e., $\operatorname{resp}\left(e v_{1}\right)=\operatorname{resp}\left(e v_{2}\right)$ (by the definition of resp [1, page 12]). Let $k:=\operatorname{resp}\left(e v_{1}\right)$ be this responsible node.

In the following, the process SI (see Definition 1 (d)) denotes the instantiated service automata framework with all CSP hiding operations removed and the internal channels renamed to not introduce additional synchronization with the removal of hiding. We assume, without loss of generality, that the service and data providers PROV_{i} do not make use of local policyinternal channels and the renamed channels either (if they would, we could choose a different renaming). Then by Lemma 2, we obtain $\mathrm{SI} \backslash H S=$ SYSTEM, where the hiding set $H S$ is defined in Definition 1 (c). It follows that there must be a trace $t r^{\prime} \in \operatorname{traces}(\mathrm{SI})$ such that $t r^{\prime} \upharpoonright \alpha($ SYSTEM $)=t r$. Particularly, we therefore have $e v_{1}, e v_{2} \triangleleft t r^{\prime}$.

Applying Lemma 5 for each event $e v \in\left\{e v_{1}, e v_{2}\right\}$, we get that in both cases either event $\operatorname{edec}_{k} .(e v, e v)$ or event $\operatorname{rtrsp}_{k} .(i d(e v), e v, e v)$ is contained in $t r^{\prime}$. This contradicts Lemma 6, which states that this can only hold for at most one of $e v_{1}$ and $e v_{2}$. Consequently, the assumption that SYSTEM sat $C h W$ does not hold leads to a contradiction and, thus, cannot be true. Therefore, SYSTEM sat $C h W$ holds.

References

[1] Richard Gay, Heiko Mantel, and Barbara Sprick. Service Automata. In Gilles Barthe, Anupam Datta, and Sandro Etalle, editors, Proceedings of the 8th International Workshop on Formal Aspects of Security and Trust, 2011. In press.
[2] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.

