
Service Automata

Richard Gay, Heiko Mantel, Barbara Sprick

Department of Computer Science, TU Darmstadt, Germany
{gay,mantel,sprick}@mais.informatik.tu-darmstadt.de

Abstract. We propose a novel framework for reliably enforcing security
in distributed systems. Service automata monitor the execution of a
distributed program and enforce countermeasures before a violation of a
security policy can occur. A key novelty of our proposal is that security
is enforced in a decentralized though coordinated fashion. This provides
the basis for reliably enforcing global security requirements without
introducing unnecessary latencies or communication overhead. The novel
contributions of this article include the concept of service automata and
a generic formalization of service automata in CSP. We also illustrate
how the generic model can be tailored to given security requirements by
instantiating its parameters in a stepwise and modular manner.

1 Introduction

If the security of a program cannot be certified a priori, then one can establish
trustworthiness a posteriori by encapsulating the program with a runtime moni-
tor. The monitor checks if the program’s actions comply with a given security
policy and modifies the program’s behavior when a policy violation is about
to occur. There are various approaches to implement such security monitors,
e.g., by in-lining them into the program code or by integrating them into the
run-time environment. For verifying the soundness of an implementation, the
intended behavior of the monitoring framework can be captured in an abstract,
formal model. Naturally, such a security model can also be used for proving
implementation-independent properties of a monitoring framework.

In this article, we propose service automata as a novel framework for enforcing
security requirements at runtime and present a formal security model for this
framework. Service automata are parametric in the security policy and can be
used for enforcing a wide range of security requirements. That is, our approach is
in the tradition of generic security monitoring that began with security automata
[14] and that has gained much popularity since (see, e.g., [7, 10, 4, 11, 3]).

Our objective is to lift generic security monitoring to distributed systems. The
distinctive feature of service automata over prior frameworks is that they support
decentralization of monitoring and enforcement in a coordinated fashion. In com-
parison to a centralized approach, where security is enforced by a dedicated node
of the distributed system, service automata allow one to reduce communication
overhead and latencies. In comparison to a fully decentralized approach, where
each program is encapsulated by a monitor that enforces a local policy, service
automata are more expressive because they can also enforce non-local security

Appeared in Preproceedings of the 8th International Workshop on Formal Aspects of

Security & Trust (FAST), Leuven, Belgium, September 15–16, 2011.

The publication will be available at www.springerlink.com

2

requirements (such as, e.g., separation of duty or Chinese Walls) by using their
communication capabilities. However, if desired, fully centralized as well as fully
decentralized enforcement can also be realized in our framework.

A technical novelty is that service automata themselves have a modular
architecture. This creates the possibility to instantiate service automata in
a stepwise manner, which we find particularly attractive. Firstly, it reduces
conceptual complexity because aspects such as enforcement, delegation, and
coordination can be addressed separately when defining an instantiation. Secondly,
it enables the re-use of components of an instantiation (e.g., when modifying
coordination while leaving enforcement and delegation unchanged). One could
even envision a library of commonly used parameters for service automata.

In summary, the main novel contributions of this article are:
– the concept of service automata for decentralized and coordinated enforcement

of security in distributed systems (Section 2);
– a generic, formal security model for service automata in Hoare’s CSP [9]

being parametric in the program, the security policy, and the enforcement
component (Section 3); and

– examples for how the formal model of service automata can be instantiated
to soundly enforce given security requirements (Sections 4 and 5).

2 Service Automata – the Concept

Runtime monitors for security provide protective encapsulations of programs,
possibly working in more than one direction. They can protect the environment
against misbehavior as well as malfunctioning of a program, and they can protect
the program against illegitimate or unforeseen input by the environment.

Our novel concept of service automata enables generic security monitoring in
distributed systems such as service-oriented architectures (hence the name service
automata). The primary goal of our proposal is not to increase expressiveness
(i.e. the class of security properties that can be enforced), but rather to enable
decentralized enforcement in a coordinated fashion. We aim for the avoidance
of bottlenecks and a reduction of communication overhead, i.e. the typical
drawbacks of centralized security monitoring. In comparison to prior approaches
for decentralized monitoring, we aim for the sound enforcement of a wider range
of security aspects, including ones that cannot be decided locally at a node in a
distributed system (see Section 6 for a detailed comparison with related work).

An individual service automaton supervises the execution of a single program
at some node of a distributed system in order to enforce a given policy. Whenever
the local program is about to execute an action that might be relevant for
the policy then this action is intercepted, and the execution of the program is
temporarily blocked. The service automaton then determines whether the action
complies with the policy and either permits the action or takes countermeasures
to enforce the policy. Possible countermeasures include terminating the program,
skipping the problematic action, or executing additional or alternative actions.
That is, the countermeasures against policy violations correspond to the ones of
edit automata [10] (and, hence, go beyond the ones of security automata [14]).

3

interceptor

enforcer

coordinator

local policy

sync

service automaton
communication

networkmonitored
program

Fig. 1. Interfaces, internal structure, and parameters of a service automaton

The key novelty of our concept is that a service automaton can communicate
with other service automata in a distributed system. This communication capa-
bility is crucial for decentralizing security monitoring and enforcement to a large
extent while still being able to enforce non-local security aspects.

Each service automaton has a modular architecture (see Figure 1), consist-
ing of four components: the interceptor that intercepts the respectively next
security-relevant action of the program, the coordinator that determines whether
the action complies with the local (security) policy and decides upon possible
countermeasures, and the enforcer that implements these decisions.

Two of these components (the local policy and the enforcer) are left parametric
in the definition of service automata (indicated by the gray boxes in the figure).
They have to be instantiated when applying service automata.

The coordinator uses the local policy to make decisions and the enforcer
to impose those decisions onto the monitored program. If the local policy is
not sufficient to decide whether a given event may occur, then the coordinator
may delegate the decision to some other service automaton. Conversely, the
coordinator might receive delegation requests from other service automata and
resolve them on their behalf. In order to support delegation in distributed systems
where the nodes are not fully connected, coordinators on intermediate nodes need
to also support routing of delegation requests and of corresponding responses.

Obviously, the concept of service automata can be implemented in various ways
and formal security models can be specified using many specification formalisms.
For the remainder of this article, we choose Hoare’s CSP as specification formalism
for our formal security model and abstract from implementation issues.

3 Service Automata – a Formal Model

3.1 A Primer to Hoare’s Communicating Sequential Processes

We briefly recall the sublanguage of Hoare’s Communicating Sequential Processes
(CSP) used in this article. For a proper introduction, we refer to [9].

A process P is a pair (α(P), traces(P)) consisting of a set of events and a
nonempty, prefix-closed set of finite sequences over α(P). The alphabet α(P)
contains all events in which P could in principle engage. The set of possible traces
traces(P) ⊆ (α(P))∗ contains all sequences of events that the process could in
principle perform. We use 〈 〉 to denote the empty sequence, 〈e〉 to denote the
trace consisting of the single event e, and s.t to denote the concatenation of two
traces s and t. That an event e occurs in a trace t is denoted by e C t.

The CSP process expression STOPE specifies a process with alphabet E
and a set of traces containing only 〈 〉. A process that performs event e and

4

interceptor

enforcer

coordinator

local policy

icpt: CE

enf
: E

D
sync: {X}

service automaton
communication

network

monitored
program

α(•p
rog

)

CE

link: DR

link: DR

lreq: CE

rreq: DR

edec,appv: ED

ddec,rdec,fwd: Id×DR

Fig. 2. Communication interface between service automata components

then behaves according to the process expression P , is specified by e → P .
External and internal choice between P and Q are specified by P 2Q and P uQ,
respectively. They model that the process behaves according to either P or Q.
The parallel composition of P and Q is specified by P ‖Q. The parallel processes
have to synchronize on the occurrences of all events that their alphabets have in
common. The process P \ E behaves as P but all events in the set E are hidden
by removing them from the process’ alphabet and possible traces.

The binary operators 2, u and ‖ are lifted to n-ary operators over non-empty
finite index sets. For instance, 2x∈X P (x) equals P (a) if X = {a} and equals
P (a) 2(2x∈X\{a} P (x)) if a ∈ X and X contains at least two elements.

We use structured events of the form c.m to model the communication of a
message m on a channel c. In a process expression we write c!m instead of c.m
in order to indicate that message m is sent on c, and use c?x : M for receiving
some message m ∈ M on channel c while instantiating the variable x with m.
Effectively, c?x : M → P (x) corresponds to an external choice on the events in
{c.m | m ∈ M } such that the computation continues according to P (m).

A process definition NAME
def
=α P declares a new process name NAME and

defines that NAME models a process whose traces are given by the process
expression P and whose alphabet equals α. We omit the subscript α in a process
definition if the alphabet of NAME shall equal α(P). Process names can be used
as subexpressions within process expressions, thus allowing for recursion.

Properties of CSP processes are modeled by unary predicates on traces. We
say that a unary predicate ϕ on traces is satisfied by a process P (denoted by
P satϕ) if and only if ϕ(t) holds for each t ∈ traces(P).

3.2 The Generic Model of Service Automata

The formal model of a single security automaton reflects the modular architecture
introduced in Section 2. We will model a service automaton as the parallel
composition of an interceptor process INT, a coordinator process COR, a local
policy •pol and an enforcer •enf . These components of a service automaton
interact with each other via unidirectional communication channels, as depicted
in Figure 2. The interceptor sends messages to the coordinator via channel icpt.
The coordinator sends messages to the local policy on channels lreq and rreq and
receives responses of different kinds on the channels edec (enforcement decisions),
ddec (delegation decisions), rdec (remote decisions), fwd (forwarded messages),
and appv (approvals of remote decisions). The coordinator also sends messages

5

to the enforcer on channel enf and the enforcer unblocks the interceptor via
channel sync. We also use unidirectional channels for the communication between
different service automata. The channel linki,j is used by the coordinator of the
service automaton with identifier i to send messages to the coordinator of service
automaton j. We assume that the set Id of all identifiers of service automata of
a given distributed system is finite.

In this section, we present the process definitions for the interceptor INT,
the coordinator COR, and the service automaton SA. The enforcer and the local
policy are parameters in the definition of SA that have to be instantiated when
applying service automata (see Definition 1 and Sections 4 and 5).

Interceptor. The interceptor specification is parametric in α, the alphabet of the
monitored program, and in β, the set of security-critical events of this program:

INTi(α, β)
def
= 2

ev∈α\β
ev → INTi(α, β)

2 2
ev∈α∩β

ev → icpt!ev → sync?x: {X} → INTi(α, β)

The interceptor synchronizes with the monitored program on each event ev ∈ α.
If ev is not policy-relevant (first line) then the interceptor simply awaits the next
event. If ev is policy-relevant (second line) then the interceptor sends ev to the
coordinator via channel icpt. It then waits until it is unblocked by the enforcer
via sync. This synchronization ensures that the interceptor and the monitored
program can only proceed after a decision about ev has been made and enforced.

Enforcer. The enforcement of decisions is not specified in this section as the
enforcer is a parameter of the generic model. Here, we only assume a set γ of
enforcement decisions that the enforcer is willing to accept from the coordinator.
Moreover, we expect instantiations of the enforcer to properly unblock the
interceptor (and thereby also the monitored program) via sync such that they
can proceed. We present definitions of typical enforcers in Section 4.1.

Coordinator. The coordinator specification is parametric in β, the set of security-
critical events of the locally monitored program, and in γ, the set of enforcement
decisions. Moreover, it assumes a set DR of delegation decisions and delegation
responses that is identical for all service automata in a given system:

CORi(β, γ)
def
= icpt?ev : β → lreq!ev

→
((
edec?ed : γ → enf !ed → CORi(β, γ)

)
2
(
ddec?(k, dr): (Id\{i})×DR → linki,k !dr → CORi(β, γ)

))
2 2

j∈Id\{i}
linkj,i ?dr : DR → rreq!dr

→
((
fwd?(k, dr ′): (Id\{i})×DR → linki,k !dr ′ → CORi(β, γ)

)
2
(
rdec?(k, dr ′): (Id\{i})×DR → linki,k !dr ′ → CORi(β, γ)

)
2
(
appv?ed : γ → enf !ed → CORi(β, γ)

))
The coordinator receives an intercepted event ev from the interceptor (via icpt)
or a delegation request/response dr from another service automaton (via linkj,i).

In the first case, the coordinator passes ev to the local policy (via lreq). In
response, the coordinator either receives an enforcement decision ed (via edec)

6

that it passes on to the enforcer (via enf), or the coordinator receives a destination
k and a delegation request dr (via ddec) and passes dr on to k (via linki,k).

In the second case, the coordinator receives a delegation request or delegation
response dr from some other service automaton j (via linkj,i) and passes it on
to the local policy (via rreq). The coordinator then may receive a destination k
and a (possibly modified) delegation request or response dr ′ (via fwd) that it
then forwards to k (via linki,k). In addition, if dr is a delegation request, the
coordinator receives a delegation response dr ′ (incorporating an enforcement
decision) together with a destination k from the local policy (via channel rdec)
and passes it to k via channel linki,k. If dr is a delegation response then the
coordinator receives a local enforcement decision ed from the local policy (via
appv) that it then forwards to the enforcer (via enf).

Service Automaton. Our CSP specification of a service automaton with identifier
i is modular and parametric in the locally monitored program (•prog), the set of
critical events of this program (β), the specification of the local policy (•pol), the
set of enforcement decisions (γ), and the specification of the enforcer (•enf):

SAi(•prog, β, •pol, γ, •enf)
def
=

[
(•prog ‖ INTi(α(•prog), β)) \ β

‖ •pol ‖ (CORi(β, γ) ‖ •enf)

]
\H , (1)

Note that the structure of the above formal specification of a service automaton
reflects the architecture depicted in Figure 1. The monitored program (•prog),
the interceptor (INTi), the coordinator (CORi), the local policy (•pol), and the
enforcer (•enf) are composed in parallel. In the definition of SAi , most events of
a service automaton are hidden using the set H that is defined as follows:

H :=

 sync.X, icpt.ev , enf.ed , lreq.ev , rreq.dr , ev ∈ β, ed ∈ γ,
edec.ed , appv.ed , ddec.(k, dr), rdec.(k, dr), dr ∈ DR,
fwd.(k, dr) k ∈ Id \ {i}

 (2)

The set H contains all events used by the components INTi , CORi , •pol, and •enf
to communicate with each other. Hiding this set of events in (1) ensures that
the environment cannot interfere with the internal communication of a service
automaton. When instantiating •pol and •enf , we will ensure that the environment
also cannot interfere with the logic of these components (see Definition 1).

The hiding of β in (1) enables the interceptor to learn about the next security-
critical event that the locally monitored program is about to execute without
making such events visible to the outside. Only the enforcer can cause critical
events such that they are visible to the environment of the service automaton
(note that •enf occurs outside the scope of the hiding operator for β). This use of
hiding only becomes possible because service automata have a modular structure.
Hiding β selectively allows us to monitor and to control security-critical actions of
a monitored program before they can have an effect on the environment without
having to transform the program (e.g. by renaming all security-critical events),
which appears unavoidable with monolithic monitor specifications.

In order to enforce security requirements in a distributed system with service
automata, one needs to instantiate the generic model with the components of
the system that shall be encapsulated and six further parameters.

7

Definition 1. A service automata framework is the process expression

‖
i∈Id

SAi(PRGi ,CE i ,POLi ,ED i ,ENFi)

that is uniquely determined by an instantiation

(Id , (PRGi)i∈Id , (CE i)i∈Id , (POLi)i∈Id , (ED i)i∈Id ,DR, (ENFi)i∈Id),

where Id is the finite set of all identifiers of monitored components and for each
component i ∈ Id, PRGi is the process expression specifying the component’s
behavior, CE i is the component’s set of critical events, POLi is the process
expression specifying the component’s local security policy, ED i is the component’s
set of possible enforcement decisions, DR is the set of possible delegation requests
and responses, and ENFi is the process expression specifying the enforcer.

We say that an instantiation is proper, iff for all i ∈ Id the following holds:
(a) CE i ⊆ α(PRGi),
(b) α(ENFi) = {sync.X} ∪ {enf.ed | ed ∈ ED i} ∪ CE i ,

(c) α(POLi) =

{
lreq.ev , rreq.dr , edec.ed , appv.ed , ev ∈ CE i , ed ∈ ED i ,
ddec.(k, dr), rdec.(k, dr), fwd.(k, dr) dr ∈ DR, k ∈ Id \ {i}

}
,

(d) α(PRGi) ∩
(
α(CORi(CE i ,ED i)) ∪ {sync.X, icpt.ev | ev ∈ CE i}
∪ {linkj,k.dr | j, k ∈ Id , dr ∈ DR}

)
= ∅.

Conditions (b) and (c) in Definition 1 restrict communication with local policies
and enforcers to the intended interfaces. Condition (d) ensures that monitored
programs do not interfere with the communication events of service automata.
For a given instantiation, we use CE to denote the set of all events of the overall
system that are somewhere security-critical, i.e. CE :=

⋃
i∈Id CE i . Analogously,

we use ED :=
⋃

i∈Id ED i for the set of all enforcement decisions.

4 Instantiation of Service Automata

When using service automata in order to reliably enforce security, the generic
model must be adequately instantiated. In particular, the policy and enforcer
component have been left underspecified in the previous section. We now give
example instantiations of these two components. Which instantiation should
be chosen in a concrete scenario depends on the actual context. A complete
instantiation for a concrete application scenario will be presented in Section 5.

4.1 Instantiation of Enforcement

It is the responsibility of the enforcer to implement decisions of the coordinator.
Several solutions to dynamically react to attempted policy violations have been
proposed in the literature on generic runtime monitoring (e.g. [14, 10]). In this
section, we show how these countermeasures can be implemented in our framework
of service automata. Historically, the first proposal was to just stop the program
execution upon the occurrence of a policy-violating event [14]. Several other
possibilities have been proposed since. We illustrate how one can instantiate the
enforcer to realize such approaches. To unify our exposition, we define the set of

8

enforcement decisions to be composed of a critical action and an enforcement
action, i.e. ED i := β × EA, where β models the set of security-critical actions
while the set EA will be instantiated for each enforcer differently.

Our first example is the terminator TERM that stops the program, when a
policy-violating event occurs. We define the set of enforcement actions for the
terminator as EA = {perm, term} and specify this enforcer as follows:

TERM(β)
def
= enf?(ev , a): β×{perm} → ev → sync!X→ TERM(β)

2 enf?(ev , a): β×{term} → STOP

If the enforcement action is perm (for permit), the enforcer executes the permitted
event and unblocks the interceptor (via sync). If the enforcement action is term (for
terminate), the terminator halts the program by not unblocking the interceptor.
This enforcer safely prevents the current as well as future policy violations.

Another countermeasure known from the literature is suppression [10]. The
suppressor SUPP simply skips a policy-violating event without halting the moni-
tored program. We define the set of enforcement actions for the suppressor as
EA = {perm, supp} and specify this enforcer as follows:

SUPP(β)
def
= enf?(ev , a): β×{perm} → ev → sync!X→ SUPP(β)

2 enf?(ev , a): β×{supp} → sync!X→ SUPP(β)

Again, if the enforcement action is perm, the suppressor executes the permitted
event and then unblocks the interceptor. If the enforcement action is supp (for
suppress), the enforcer skips the critical event and unblocks the interceptor (via
sync). In comparison to TERM, SUPP is less rigorous because after suppressing
a policy-violating event, it allows the monitored program to continue.

Another standard countermeasure is replacement. The replacer substitutes
the policy-violating event by a sequence of events and can also halt the program.
We define the set of enforcement actions for the replacer by EA = (β ∪ {stop})∗
and instantiate the replacer as follows:

REPLACE(β)
def
= enf?(ev , σ): β×EA→ REPL(β, σ)

REPL(β, 〈 〉) def
= sync!X→ REPLACE(β)

REPL(β, 〈stop〉.σ)
def
= STOP

REPL(β, 〈e〉.σ)
def
= e→ REPL(β, σ)

This enforcer simply receives an event sequence σ as enforcement action.
The policy-violating event is then replaced by this event sequence by recursively
calling the process REPL. If the sequence is empty (i.e. 〈 〉), the process unblocks
the interceptor (via sync). If the sequence starts with the special event stop, the
replacer terminates and halts the interceptor by not synchronizing.

The replacer is a powerful enforcer. It subsumes all enforcers above as it
allows to execute a permissible event ev (by replacing it with itself), to halt a
malicious program, and to skip a policy-violating event (by replacing ev with
〈〉). For example, if the result of a database query leaks personal information like
‘Alice earns 6000 Euros’, the query result could be replaced by an error message:
‘You are not authorized for personal information’.

9

routing
decision-making
and delegation

rereq

rtreq, rtrsp

rreq

ddec, rdec,
appv, fwd

lreq

edec

Fig. 3. Composition of a local policy from two components

All example instantiations above correspond to well-known enforcers. Security
automata as defined in [14] use termination as the only enforcement action.
Effectively, a security automaton is a service automaton without communica-
tion capabilities and with term and perm as the only enforcement actions. Edit
automata have been introduced in [10]. They allow to terminate a program
(called truncation in [10]), suppress program events and insert action sequences.
Effectively, an edit automaton is a service automaton without any communica-
tion capabilities and with REPLACE as enforcer. Naturally, one has to choose
an enforcer that is adequate for a given application scenario. If none of the
three predefined enforcers is suitable, one still has the possibility to invent an
application-specific enforcer when defining the instantiation. That is, the enforcers
defined so far should be seen as the nucleus of a growing library.

4.2 Instantiation of the Local Security Policies
In order to reduce conceptual complexity, a local security policy can be specified
in a modular manner. This allows one to address complementary aspects such
as decision-making, delegation of decisions and routing separately. Moreover,
a policy or policy component can also be defined in a stepwise manner, as we
illustrate here at the example of a routing component. Our generic specification
of a routing component will be specialized for a concrete setting in Section 5.

The role of such a routing component within a local security policy is visualized
in Figure 3, which also depicts the communication channels of a policy. Note,
that the specification of the decision-making and delegation component (which is
left underspecified here) can again be defined in a modular fashion.

For simplicity, we assume in our example a static routing policy that uses a
fixed route between any two service automata. The function nxt(i, k) determines
the next node on the route from service automaton i to the final destination k. The
set DR of delegation requests and responses is defined as DR := Id×CE ·∪ Id×ED
where the first component denotes the final destination of the request or response
and the second component is either the critical event (in CE) for which a decision
is requested or a decision (in ED) for a previous request. The channels rereq, rtreq
and rtrsp are used for the communication between the routing and the delegation
and decision-making policy component. We specify this generic router as follows:

SRPi
def
=α rreq?(k, x): {(k′, x′) ∈ DR | k′ 6= i} → fwd!(nxt(i, k), (k, x))→ SRPi

2 rreq?(k, ev): {i}×CE → rereq!ev → SRPi

2 rreq?(k, ed): {i}×ED → appv!ed → SRPi

2 rtreq?(k, ev): Id×CE → ddec!(nxt(i, k), (k, ev))→ SRPi

2 rtrsp?(k, ed): Id×ED → rdec!(nxt(i, k), (k, ed))→ SRPi

This router accepts a delegation request (k, ev) or response (k, ed) from the
coordinator (via rreq). If this request or response has not reached its final

10

sp1

...

spm

service providers

dp1

...

dpn

data providers

u1

...

uk

users

distributed service

Fig. 4. Application Scenario

destination, the coordinator is informed (via fwd) that it should forward the
request or response to the next node on the path to k. Otherwise, if it is a
request, then it is passed on to the decision-making and delegation component
(via rereq), and if it is a response, then an approval for this decision is sent to the
coordinator (via appv). This router also accepts delegation requests (via rtreq)
and responses (via rtrsp) from the delegation and decision-making component
and forwards them to the coordinator together with the identifier of the next
node on the route to the final destination (via ddec or rdec). The alphabet α of
this router is α :={rreq.dr , fwd.(k, dr), ddec.(k, dr), rdec.(k, dr), appv.ed , rereq.ev ,
rtreq.(k, ev), rtrsp.(k, ed ′) | k ∈ Id \ {i}, ev ∈ CE , ed ∈ ED i , ed ′ ∈ ED , dr ∈ DR}.

This generic specification of the routing component can be instantiated
for a concrete application scenario by defining the function nxt based on the
communication structure that is available in the given distributed system.

5 Stepwise Instantiation in an Application Scenario

In this section, we demonstrate the stepwise instantiation of service automata for
an example scenario in which a Chinese Wall security policy shall be enforced.

The scenario. We consider a distributed service (depicted in Figure 4) in which
a set of service providers (SP = {sp1, . . . , spm}) offers services to users (U =
{u1, . . . , uk}). A user places a query to a service provider who then requests the
information that is necessary for computing this query from the data providers
(DP = {dp1, . . . , dpn}). The data providers return the requested data objects to
the service provider. After receiving all necessary objects from the data providers,
the service provider computes the query result and sends it to the user.

We model the responses of a data provider dp to a request by events of the
form ev = (u, {o}, dp, sp), where u denotes the user on whose behalf the request
was placed, {o} is a singleton set containing the requested object and sp is the
service provider to whom the response is addressed. Moreover, we model the
replies of a service provider sp to queries by events of the form ev ′ = (u,O ′, sp),
where u is the user who has placed the query and O ′ ⊆ O denotes the set of
objects addressed by this query. We assume that for each event ev and ev ′, there
is a unique event dummyev that constitutes a legitimate response that does not
reveal any information about objects (e.g. an error message).

The security requirement. In our scenario, data objects may belong to competing
companies. We say, that such objects are in conflict and capture this by an
irreflexive and symmetric conflict of interest relation COI ⊆ O ×O on objects.
Any query result that a service provider delivers to a user must neither depend

11

on conflicting objects nor on objects that are in conflict with objects used for
computing results requested earlier by the same user.

Towards an Instantiation. In this section, we show how coordinated enforcement
can be used to enforce the Chinese Wall policy in the above example. We encap-
sulate all service providers and data providers by service automata. A function
resp maps each policy-relevant event that is performed by the monitored data
or service provider to the identifier of the service automaton that is responsible
to decide on the event. For events that address an object residing on a data
provider which also stores all conflicting objects, the service automaton of this
data provider is responsible. If a service provider has exclusive access to all
objects in given COI sets, this service provider is responsible for events modeling
queries that involve only objects from those COI sets. Finally, if a user only
uses a single service provider, then the service automaton that encapsulates this
service provider is responsible for all events modeling queries by this user. For
events accessing objects of COI sets which do not fall under the previous cases we
are free to choose an arbitrary service automaton to be responsible. Note, that
if only the first three cases are present, the Chinese Wall policy could already
be enforced by local monitors. However, this condition is somewhat restrictive
and it is likely, that it is not satisfied. In this case, coordinated enforcement is
required.

Instantiation. We instantiate the set Id by Id :={dp1, . . . , dpn, sp1, . . . , spm}
assuming that the monitored programs of the service and data providers are
represented by process expressions PROVi for i ∈ Id . The set of critical events
CE i for each i ∈ Id is a subset of α(PROVi) that is defined as follows: In case i
is a data provider, the critical events CE i contain all responses to access requests.
These events are either of the form ev = (u, {o}, i , sp) or dummyev . In case i
is a service provider, the critical events CE i contain all replies to former user
queries. These events are either of the form ev ′ = (u,O ′, i) or dummyev ′ . Note,
that CE i ∩ CE j = ∅ holds for i 6= j. We define obj (ev) ⊆ O to denote the set of
objects that are contained in ev and u(ev) ∈ U to denote the user contained in
ev . If ev ∈ CE i for some i , then we define id(ev) = i (otherwise id is undefined).
We lift the conflicts on objects to conflicts on critical events: two events are
in conflict, denoted ev ⊗ ev ′, iff they are not dummy events and they access
conflicting objects on behalf of the same user, i.e., u(ev) = u(ev ′) and there exist
o1 ∈ obj (ev), o2 ∈ obj (ev ′) with (o1, o2) ∈ COI .

We now instantiate the local policy and the enforcer. The policy is the parallel
composition of a decision-making component, a delegation component and a
routing component. The decision-making component (to be specified below)
communicates with the delegation component (to be specified below) via lereq,
and with the routing component via rereq (to be specified below) and rtrsp. The
delegation component communicates with the routing component via rtreq.

Instantiating decision-making. Whether a critical event is permissible, depends
on critical events that have previously been performed on behalf of the same user.
Hence, the decision-making component of the local policy collects all previously
performed events in its state q ∈ 2CE . In a state q , an event ev shall be rejected

12

and replaced by a dummy event if it is in conflict with any previously accessed
event, i.e., ev ∈ conf (q) for conf (q) = {ev ∈ CE | ∃ev ′ ∈ q ∪ {ev}.(ev ⊗ ev ′)}.
We instantiate the enforcement decisions by ED i := CE i × CE i .

DECi(q)
def
=α lereq?ev : CE i ∩ conf (q)→ edec!(ev , dummyev)→ DECi(q)

2 lereq?ev : CE i \ conf (q)→ edec!(ev , ev)→ DECi(q ∪ {ev})
2 rereq?ev : conf (q)→ rtrsp!(id(ev), (ev , dummyev))→ DECi(q)
2 rereq?ev : CE \ conf (q)→ rtrsp!(id(ev), (ev , ev))→ DECi(q ∪ {ev})

The process accepts local and remote decision requests (via lereq and rereq). In
case of a local request, it sends its decision to the coordinator (via edec). In case
of a remote request, this enforcer sends its decision to the routing component (via
rtrsp). If the enforcer permits the event, it updates its state q . If it rejects the event,
it replaces the policy-violating event by a dummy event. The process engages in
all communication on the used channels with alphabet α = {lereq.ev , edec.ed |
ev ∈ CE i , ed ∈ ED i} ∪ {rereq.ev , rtrsp.(k, ed) | ev ∈ CE , ed ∈ ED , k ∈ Id}.

Instantiating delegation. The delegation component identifies the responsible
service automaton for deciding on a critical event. We define the function resp
such that it determines the same responsible automaton for any two conflicting
events, i.e. for all ev , ev ′ with ev ⊗ ev ′ we have resp(ev) = resp(ev ′). Based on
resp, the delegation component determines, whether an event can be decided
locally or needs to be delegated.

DELi
def
=α lreq?ev : {ev ′ ∈ CE i | i = resp(ev ′)} → lereq!ev → DELi

2 lreq?ev : {ev ′ ∈ CE i | i 6= resp(ev ′)} → rtreq!(resp(ev), ev)→ DELi

The process accepts a local event (via lreq). If the local service automaton is
responsible (i = resp(ev)), the policy requests local decision-making (via lereq).
Otherwise, it instructs the routing process (via rtreq) to determine the route
to resp(ev). In the process definition, α = {lreq.ev , lereq.ev | ev ∈ CE i} ∪
{rtreq.(k, ev) | ev ∈ CE , k ∈ Id \ {i}} ensures that DELi participates in all
communication on the used channels.

Instantiating routing. In our example, the communication structure between
service automata is a fully connected graph that does not change over time. We
use the static routing subcomponent SRPi defined in Section 4.2 and concretize
the function nxt(i, k) such that it returns destination k as the next node.

Instantiating the enforcement. In our scenario, policy-violating events are replaced
by the corresponding dummy events determined by the decision-making. This
is implemented by the enforcer REPLACE(CE i) of Section 4.1 with replacement
sequences EA concretized by CE i . How critical events are replaced is specified
in the definition of DECi(q) above.

Service automata framework. The instantiation of the local policy is the parallel

composition POLi
def
= (DELi ‖DECi(∅) ‖ SRPi) \ H pol

i , which hides the internal
communication with the set

H pol
i :=

{
lereq.ev , rereq.ev , ev ∈ CE
rtreq.(k, ev), rtrsp.(k, ed) ed ∈ ED , k ∈ Id \ {i}

}
.

13

Then the controlled system is the instantiated service automata framework

SYSTEM
def
= ‖

i∈Id
SAi(PROVi ,CE i ,POLi ,ED i ,REPLACE(CE i))

Soundness of the Enforcement. We formalize the Chinese Wall security require-
ment of our scenario by the following definition:

Definition 2. For sequences tr of events, we define the predicate ChW by

ChW(tr) :=¬∃ev1, ev2 ∈ CE .(ev1 C tr ∧ ev2 C tr ∧ ev1 ⊗ ev2).

That is, in a single trace, no conflicting accesses may occur. With this definition,
the controlled system soundly enforces the Chinese Wall policy.

Theorem 1. SYSTEMsatChW.

Proof (sketch 1). Suppose, Theorem 1 does not hold. Then there exists a system
trace tr that contains two conflicting events ev1 and ev2 (with ev1 ⊗ ev2). The
instantiation of the enforcer ensures that an event is performed only after a
corresponding permission decision has been received. We can show, that the
permission decisions for ev1 and ev2 must have been made by their respective
responsible nodes. Since ev1 and ev2 are in conflict, they have the same responsible
node (by the definition of function resp). This node must hence have permitted
both events ev1 and ev2. However, this contradicts the instantiation of the
decision-making component together with the definition of function conf . Hence,
tr cannot contain both conflicting events ev1 and ev2 and Theorem 1 holds. ut

6 Related Work

Generic security monitoring was pioneered by Schneider’s framework of security
automata [14]. While security automata and edit automata [10] were designed
for securing individual programs, our service automata framework can secure
distributed systems in a decentralized, coordinated fashion.

Another framework for monitoring policies in distributed, service-based sys-
tems is proposed on a conceptual level in [6]. However, unlike our approach, this
framework is restricted to monitoring without enforcement and, moreover, local
monitors can only communicate via a central unit.

A similar restriction appears in the framework for coordinated decision-making
proposed in [5]. Local monitors are composed from three components: a policy
information point (PIP), a policy decision point (PDP), and a policy enforcement
point (PEP). While a local monitor can make enforcement decisions by itself,
this capability is limited because PDPs are stateless. In order to remedy this
deficiency, local monitors can communicate with special coordination objects
that are stateful. However, local monitors cannot communicate directly with each
other and coordination objects cannot communicate among each other either.
This limits the possibilities for coordinated, decentralized enforcement.

In [15], an approach to decentralized monitoring is proposed and formalized
in a temporal logic. In this approach, a monitor piggy-backs information about
its local state onto regular messages of the monitored program. In contrast to

1 The full formal proof is available on the authors’ website.

14

our approach, no additional messages need to be introduced. The drawback is
that monitors cannot trigger communication themselves and, hence, have to rely
on information about other nodes that might be outdated. This makes a sound
enforcement of global security aspects impossible if these depend on up-to-date
information about remote nodes (such as Chinese Wall policies).

The law-governed interaction framework [12] performs monitoring and enforce-
ment based on the interception and alteration of messages exchanged between
nodes of the given distributed system. In contrast, service automata can observe
individual computation steps of a monitored program, which results in more
fine-grained information for making enforcement decisions. While the framework
in [12] has been implemented, it lacks a formal model or soundness result.

In [11], an approach to synthesize decentralized monitors for enforcing policies
in distributed systems is described. However, the synthesized controllers cannot
communicate with each other. Hence, global security requirements such as, e.g,
Chinese Wall policies cannot be enforced (as already pointed out in [11]). The
same limitation applies to the distributed usage control approach proposed in [1].

The process algebra that we employ in this paper, i.e. CSP [9] has already
been used to formalize generic security monitors in [2] and, in combination with
Object Z, in [4]. Like in our approach, a monitor synchronizes with a program on
all security-critical actions. However, monitors lack communication capabilities
and, moreover, termination is the only countermeasure against policy violations
that is supported. In contrast to this, our service automata can coordinate their
actions to enforce global security requirements, and they support a wider range
of countermeasures including termination, suppression, replacement, and others.

The application of run-time monitoring for usage control is gaining popularity.
In [13], a translation from high-level usage control policies to low-level policies
is proposed that respects monitoring capabilities by distinguishing controllable,
observable and non-observable aspects. The article also proposes an enforcement
architecture for data providers while the enforcement architecture in [16] focuses
on data consumers and relies on a translation of usage control policies into low-
level access control policies. Formal semantics for some usage control policies exist
(see, e.g., [8]), but a satisfactory formal model for the enforcement of distributed
usage control is yet lacking. Service automata might be able to fill this gap.

7 Conclusion

In this article, we proposed service automata as a framework for enforcing security
requirements in distributed systems at runtime. We developed a generic security
model in CSP that can be instantiated in a stepwise and modular fashion. As an
example, we presented a specialization for an application scenario and used the
resulting formal model to prove that Chinese Wall policies are soundly enforced.
The formal security model could also be used to prove that an implementation
of service automata is sound, but this is outside the scope of the current article.

We are confident that service automata provide a very suitable basis for
enforcing security in distributed systems, including aspects of access control and
usage control. In the future, we plan to explore this spectrum further, provide an
efficient implementation of the service automata framework and use our formal
security model of service automata to prove the soundness of the implementation.

15

Acknowledgements. We thank Sarah Ereth for her feedback and the anonymous

reviewers for their constructive comments. This work was partially funded by CASED

(www.cased.de) and by the DFG (German research foundation) under the project

FM-SecEng in the Computer Science Action Program (MA 3326/1-3).

References

1. Aziz, B., Arenas, A., Martinelli, F., Matteucci, I., Mori, P.: Controlling Usage
in Business Process Workflows through Fine-Grained Security Policies. In: 5th
International Conference on Trust, Privacy and Security in Digital Business. pp.
100–117. LNCS 5185, Springer (2008)

2. Basin, D.A., Burri, S.J., Karjoth, G.: Dynamic Enforcement of Abstract Separation
of Duty Constraints. In: 14th European Symposium on Research in Computer
Security. pp. 250–267. LNCS 5789, Springer (2009)

3. Basin, D.A., Klaedtke, F., Müller, S.: Policy Monitoring in First-Order Temporal
Logic. In: 22nd International Conference on Computer Aided Verification. pp. 1–18.
LNCS 6174, Springer (2010)

4. Basin, D.A., Olderog, E.R., Sevinç, P.E.: Specifying and analyzing security automata
using CSP-OZ. In: ACM Symposium on Information, Computer and Communica-
tions Security. pp. 70–81. ACM (2007)

5. Chadwick, D.W., Su, L., Otenko, A., Laborde, R.: Coordination between Distributed
PDPs. In: 7th IEEE International Workshop on Policies for Distributed Systems
and Networks. pp. 163–172. IEEE Computer Society (2006)

6. Comuzzi, M., Spanoudakis, G.: A Framework for Hierarchical and Recursive Moni-
toring of Service Based Systems. In: 4th International Conference on Internet and
Web Applications and Services. pp. 383–388. IEEE Computer Society (2009)

7. Erlingsson, U., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-
spective. In: 2nd New Security Paradigms Workshop. pp. 87–95. ACM (2000)

8. Hilty, M., Pretschner, A., Basin, D.A., Schaefer, C., Walter, T.: A Policy Language
for Distributed Usage Control. In: 12th European Symposium on Research in
Computer Security. pp. 531–546 (2007)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc. (1985)
10. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for

Run-time Security Policies. International Journal of Information Security 4(1–2),
2–16 (2005)

11. Martinelli, F., Matteucci, I.: Synthesis of Local Controller Programs for Enforc-
ing Global Security Properties. In: 3rd International Conference on Availability,
Reliability and Security. pp. 1120–1127. IEEE Computer Society (2008)

12. Minsky, N.H.: The Imposition of Protocols Over Open Distributed Systems. IEEE
Transactions on Software Engineering 17(2), 183–195 (1991)

13. Pretschner, A., Hilty, M., Basin, D.: Distributed Usage Control. Communications
of the ACM 49(9), 39–44 (2006)

14. Schneider, F.B.: Enforceable Security Policies. Transactions on Information and
System Security 3(1), 30–50 (2000)

15. Sen, K., Vardhan, A., Agha, G., Roşu, G.: Efficient Decentralized Monitoring
of Safety in Distributed Systems. In: 26th International Conference on Software
Engineering. pp. 418–427. IEEE Computer Society (2004)

16. Zhang, X., Seifert, J.P., Sandhu, R.: Security Enforcement Model for Distributed
Usage Control. In: 2008 IEEE International Conference on Sensor Networks, Ubiq-
uitous, and Trustworthy Computing. pp. 10–18. IEEE Computer Society (2008)

