
Addendum to the Article “Types vs. PDGs in
Information Flow Analysis” – Proofs and

Operational Semantics

Heiko Mantel and Henning Sudbrock

Computer Science Department, TU Darmstadt, Germany
{mantel,sudbrock}@mais.informatik.tu-darmstadt.de

This document contains proofs for theorems from the article “Types vs. PDGs
in Information Flow Analysis” [MS13] (in Sections 1 and 2). Moreover as an
addendum to the article it contains the operational semantics for the considered
programming language (in Section 3).

1 Proof of Lemma 1

Before proving Lemma 1 from [MS13] we prove several propositions that relate
paths in the graph PDG(CFGI,O

c) where c is of the form if (e) then c1 else c2 fi,
while (e) do c1 od, or c1; c2 to paths in the graphs PDG(CFGI,O

c1) and (if applica-

ble) PDG(CFGI,O
c2). In the proofs, we write p + k for the path that is obtained

from p by adding k to each node on p that is a natural number, and leaving start
and stop unchanged. Moreover, we write p−k for the path that is obtained from
p by subtracting k from each node on p that is a natural number, and leaving
start and stop unchanged.

Proposition 1. Let c = if (e) then c1 else c2 fi and x , y ∈ Var. Then the following
hold:
1. There is a path from in to out in PDG(CFG{x},{y}

c) that contains more than
2 nodes if and only if one of the following conditions are satisfied:
(a) there is a path from in to out in PDG(CFG{x},{y}

c1),

(b) there is a path from in to out in PDG(CFG{x},{y}
c2),

(c) x ∈ fv(e) and there is a path from start to out in PDG(CFG{x},{y}
c1) that

contains more than 2 nodes, or
(d) x ∈ fv(e) and there is a path from start to out in PDG(CFG{x},{y}

c2) that
contains more than 2 nodes.

2. There is a path from start to out in PDG(CFG{x},{y}
c) that contains more

than 2 nodes if and only there is such a path in PDG(CFG{x},{y}
c1) or in

PDG(CFG{x},{y}
c2).

Proof. We firstly prove Statement (1) of the proposition.
1. By the construction of the CFG for commands the following holds:

(a) Let n,n ′ 6∈ {1, start , stop} be nodes of CFGc . Then n ′ is data (control)
dependent on n for CFGc if and only if n ′	 1 is data (control) dependent on

n 	 1 for CFGc1 or n ′	 1	 |c1| is data (control) dependent on n 	 1	 |c1|
for CFGc2 .
Moreover, n is not data dependent on 1 and 1 is not data dependent on n.
Moreover, n is control dependent on 1 if and only if n 	 1 is control depen-
dent on start for CFGc1 or n 	 1	 |c1| is control dependent on start for
CFGc2 .

2. By the construction of the PDG and the construction of the CFG for com-
mands we obtain the following:
(a) Let n 6∈ {1, start , stop} be a node of CFGc . Then there is an edge (in,n)

in PDG(CFG{x},{y}
c) if and only if there is an edge (in,n 	 1) in the graph

PDG(CFG{x},{y}
c1) or an edge (in,n 	 1	 |c1|) in PDG(CFG{x},{y}

c2).

Moreover, there is an edge (n, out) in PDG(CFG{x},{y}
c) if and only if there

is an edge (n 	 1, out) in PDG(CFG{x},{y}
c1) or an edge (n 	 1	 |c1|, out) in

PDG(CFG{x},{y}
c2).

(b) There is an edge (in, 1) in PDG(CFG{x},{y}
c) if and only if x ∈ fv(e).

Moreover, there is no edge (1, out) in PDG(CFG{x},{y}
c).

(c) There is an edge (in, out) in PDG(CFG{x},{y}
c) if and only if there is an

edge (in, out) in PDG(CFG{x},{y}
c1) or in PDG(CFG{x},{y}

c2).

3. Assume that there is a path p from in to out in PDG(CFG{x},{y}
c).

(a) If p = 〈in, out〉, then by (2c) p is also a path in PDG(CFG{x},{y}
c1) or in

PDG(CFG{x},{y}
c2).

(b) If p = 〈in, 1〉.p′ for some p′, then, by (2b), x ∈ fv(e) and p′ 6= 〈out〉. More-
over, by (1a) the first node in p′ is control dependent on start in CFGc ,

and, since due to (1a) all edges in p′ derive from edges in PDG(CFG{x},{y}
c1)

or PDG(CFG{x},{y}
c1), 〈start〉.(p′	 1) is a path from start to out that con-

tains more than 2 nodes in the graph PDG(CFG{x},{y}
c1) or in the graph

PDG(CFG{x},{y}
c1).

(c) If p 6= 〈in, out〉 and p 6= 〈in, 1〉.p′ for some p′, then, using (1a) and (2a),

p − 1 is a path in PDG(CFG{x},{y}
c1) or in PDG(CFG{x},{y}

c1).

4. Assume that there is a path p from in to out in PDG(CFG{x},{y}
c1). Then,

by (1a), (2a), and (2c), p + 1 is a path in PDG(CFG{x},{y}
c).

5. Assume that there is a path from in to out in PDG(CFG{x},{y}
c2). Then, by

(1a), (2a), and (2c), p + (1 + |c1|) is a path in PDG(CFG{x},{y}
c2).

6. Assume that x ∈ fv(e) and that there is a path from start to out in the graph

PDG(CFG{x},{y}
c1), i.e., of the form 〈start〉.p′. Then, by (1a), (2a), and (2b),

the sequence 〈in, 1〉.(p′ + 1) is a path in PDG(CFG{x},{y}
c).

7. Assume finally that x ∈ fv(e) and that there is a path from start to out in

PDG(CFG{x},{y}
c2) that contains more than 2 nodes, i.e., of the form 〈start〉.p′.

Then, by (1a), (2a), and (2b), the sequence 〈in, 1〉.(p′ + (1 + |c1|)) is a path

in PDG(CFG{x},{y}
c).

Statement (2) of the proposition is seen as follows:. Using (1) and (2) of the proof
of the first statement of the proposition, paths from Node start to Node out in

PDG(CFG{x},{y}
c) that contains more than 2 nodes are exactly the paths ob-

tained from paths from start to out in PDG(CFG{x},{y}
c1) and PDG(CFG{x},{y}

c2),
respectively, into which the node representing the guard of the conditional (i.e.,
Node 1) is inserted directly after node start , and 1 respectively 1 + |c1| is added
to each node.

Proposition 2. Let c = c1; c2 and x , y ∈ Var. Then the following hold:

1. There is a path from in to out in PDG(CFG{x},{y}
c) if and only if there exists

z ∈ Var such that there is a path from in to out in PDG(CFG{x},{z}
c1) and a

path from in to out in PDG(CFG{z},{y}
c2).

2. There is a path from start to out in PDG(CFG{x},{y}
c) that contains more

than 2 nodes if and only if one of the following conditions is satisfied:
(a) there exists z ∈ Var such that there is a path from start to out that

contains more than 2 nodes in the graph PDG(CFG{x},{z}
c1) and a path

from in to out in PDG(CFG{z},{y}
c2), or

(b) there is a path from start to out in PDG(CFG{x},{y}
c2) that contains more

than 2 nodes.

Proof. We firstly prove Statement (1).

1. By the construction of the CFG for commands, the following hold:
(a) Let n,n ′ 6∈ {start , stop} be nodes of CFGc . Then n ′ is control dependent

on n for CFGc , if and only if n ′ is control dependent on n for CFGc1 , or if
n 	 |c1| is control dependent on n 	 |c1| for CFGc2 .

(b) Let n,n ′ 6∈ {start , stop} be nodes of CFGc . Then n ′ is data dependent on
n for CFGc if and only if one of the following conditions is satisfied:

i. n ′ is data dependent on n for CFGc1

ii. n ′	 |c1| is data dependent on n 	 |c1| for CFGc2

iii. There exists z ∈ Var such that z ∈ defc1(n), z ∈ usec2(n ′	 |c1|), a
definition of z at n reaches stop in CFGc1 , and a definition of z at start
reaches n ′	 |c1| in CFGc2 .

Note that condition (iii) is equivalent to the existence of z ∈ Var such that

there is an edge from n to out in PDG(CFG{x},{z}
c1) and an edge from in

to (n ′	 |c1|) in PDG(CFG{z},{y}
c2).

2. By the definition of PDGs and the definition of CFGs of commands there is
an edge (in, out) in PDG(CFG{z},{y}

c) if and only if x = y and (in, out) is an

edge both in PDG(CFG{z},{y}
c1) and in PDG(CFG{z},{y}

c2).

3. Assume that there is a path p from in to out in PDG(CFG{x},{y}
c).

(a) If p = 〈in, out〉, then, by (2), we conclude (setting z = x = y).
(b) If p contains, besides in and out , only nodes in the set {1, . . . , |c1|}, then

a definition of y at the one but last node of p reaches stop in CFGc , and,
hence, a definition of y at start reaches stop in CFGc2 . Hence, p is a path

in PDG(CFG{x},{y}
c1) and 〈in, out〉 is a path in PDG(CFG{y},{y}

c2). Thus,
we conclude setting z = y .

(c) If p contains, besides in and out , only nodes in {|c1|+1, . . . , |c1; c2|}, we
argue as in the previous case with roles of c1 and c2 switched, concluding
by setting z = x .

(d) If p contains nodes in both {1, . . . , |c1|} and {|c1|+1, . . . , |c1; c2|}, then,
by the definition of the CFG, p = p1.p2 where p1 contains only nodes
in {1, . . . , |c1|} and p2 contains only nodes in {|c1|+1, . . . , |c1; c2|}. With
(1b.iii) it follows that there is z such that p1.〈out〉 is a path in the graph

PDG(CFG{x},{z}
c1) and 〈in〉.p2 is a path in PDG(CFG{z},{y}

c2).
4. Now assume that there exists z ∈ Var and paths p1 and p2 from in to out

in PDG(CFG{x},{z}
c1) and in PDG(CFG{z},{y}

c2), respectively. With (1b.iii) it

follows that there exists a path from in to out in PDG(CFG{x},{z}
c) (by joining

these two paths).

We now prove Statement (2).

1. By the construction of the CFG for c1; c2 and the definition of postdominance,
a node n is control dependent on start in CFGc if and only if n is control
dependent on start in CFGc1 or n 	 |c1| is control dependent on start in
CFGc2 .

2. Assume that p is a path from start to out in PDG(CFG{x},{y}
c) that contains

more than 2 nodes.
(a) If p contains, besides start and out , only nodes in {|c1|+1, . . . , |c1; c2|},

then p−|c1| is a path from start to out in PDG(CFG{x},{y}
c2) that contains

more than 2 nodes (by (1), (1a), (1b), and the proof of the first statement
of the proposition).

(b) Otherwise, using (1) and arguing analogously to the proof of the first part
of the proposition, there exists z such that there are paths from start to out
in the graph PDG(CFG{x},{z}

c1) (containing more than 2 nodes) and from

in to out in the graph PDG(CFG{z},{y}
c1).

3. The backwards direction (assuming paths in the graphs PDG(CFG{x},{y}
c1)

and PDG(CFG{x},{y}
c2)) is analogous to the previous cases.

Proposition 3. Let c = while (e) do c1 od. Then the following hold:

1. There is a path from in to out in PDG(CFG{x},{y}
c) if and only if there

exist z1, . . . , zk (for some k > 1) with z1 = x and zk = y such that for each
i ∈ {1, . . . , k − 1} one of the following conditions is satisfied:

(a) there is a path from in to out in PDG(CFG{zi},{zi+1}
c1), or

(b) zi ∈ fv(e) and there is a path from start to out in PDG(CFG{zi},{zi+1}
c1)

that contains more than 2 nodes.
2. There is a path from start to out in PDG(CFG{x},{y}

c) that contains more
than 2 nodes if and only if there exist z1, . . . , zk (for some k > 0) such that zk =

y, there is a path from start to out in PDG(CFG{x},{z1}
c1) that contains more

than 2 nodes, and for each i ∈ {1, . . . , k − 1} one of the following conditions
is satisfied:
(a) there is a path from in to out in PDG(CFG{zi},{zi+1}

c1), or

(b) zi ∈ fv(e) and there is a path from start to out in PDG(CFG{zi},{zi+1}
c1)

that contains more than 2 nodes.

Proof. We start proving Statement (1) of the proposition.
1. By the construction of the CFG for commands the following hold:

(a) Let n,n ′ 6∈ {1, start , stop} be nodes of CFGc . Then n ′ is data dependent
on n for CFGc if and only if one of the following holds:

i. n ′	 1 is data dependent on n 	 1 for CFGc1 or
ii. there exists z ∈ Var such that (n 	 1, out) is an edge in the graph

PDG(CFG{x},{z}
c1) and (in,n ′	 1) is an edge in PDG(CFG{z},{y}

c1).
Moreover, Node 1 is data dependent on n if and only if there exists z ∈ fv(e)

such that (n, out) is an edge in PDG(CFG{x},{z}
c1).

(b) Let n,n ′ 6∈ {1, start , stop} be nodes of CFGc . Then n ′ is control depen-
dent on n for CFGc if and only if n ′	 1 is control dependent on n 	 1 for
CFGc1 .
Moreover, n is control dependent on 1 if and only if n 	 1 is control depen-
dent on start for CFGc1 .

2. By the construction of the PDG and the construction of the CFG for com-
mands the following hold:
(a) Let n 6∈ {1, start , stop} be a node of CFGc . Then there is an edge (in,n)

in PDG(CFG{x},{y}
c) if and only if there is an edge (in,n 	 1) in the graph

PDG(CFG{x},{y}
c1).

Moreover, there is an edge (n, out) in PDG(CFG{x},{y}
c) if and only if there

is an edge (n 	 1, out) in PDG(CFG{x},{y}
c1).

(b) There is an edge (in, 1) in PDG(CFG{x},{y}
c) if and only if x ∈ fv(e).

Moreover, there is no edge (1, out) in PDG(CFG{x},{y}
c).

(c) There is an edge (in, out) in PDG(CFG{x},{y}
c) if and only if there is an

edge (in, out) in PDG(CFG{x},{y}
c1).

3. Assume that there is a path p from in to out in PDG(CFG{x},{y}
c).

(a) If p = 〈in, out〉, then by (2c) it is also a path in PDG(CFG{x},{y}
c1).

(b) If p consists of more than 2 nodes, then by (1) and (2) p consists of seg-

ments that correspond to paths in PDG(CFG{x},{y}
c1), potentially separated

by Node 1 (representing the guard of the loop), where the edges (n,n ′) be-

tween these segments correspond to edges (n, out) in PDG(CFG{zi},{zi+1}
c1)

and (in,n ′) respectively (start ,n ′) in PDG(CFG{zi+1},{zi+2}
c1) for a sequence

of zi.
(c) Hence, there exist z1, . . . , zk and paths from in to out respectively from

start to out (containing more than 2 nodes when starting an start) in the

PDGs PDG(CFG{zi},{zi+1}
c1), where z1 = x and zk = y .

4. Assume now that there exist z1, . . . , zk with z1 = x and zk = y and paths
from in to out respectively from start to out (containing more than 2 nodes)

in the PDGs PDG(CFG{zi},{zi+1}
c1).

(a) Using (1) and (2), these paths can be concatenated using the same argu-
ments as in Propositions 1 and 2, where Node start is replaced by Node 1.

Statement (2) of the proposition is proven analogously to Statement (1), with the
only difference being that the first segment of the path now begins at Node start ,
not at Node in.

We prove a generalization of Lemma 1 from [MS13] that permits arbitrary
security domains for the program counter in the typing judgment. The general-
ization permits an inductive proof over the construction of the command c.

Proposition 4. Let c ∈ Com, Γ : Var → D, pc ∈ D, and y ∈ Var. Let Γ ′ be
the environment with pc ` Γ {c}Γ ′. Let X ⊆ Var be such that x ∈ X if and only

if there is a path 〈in, . . . , out〉 in PDG(CFG{x},{y}
c). Then one of the following

two conditions is satisfied:
1. Γ ′(y) = pc t

(⊔
x∈X Γ (x)

)
, and there is a path from start to out in the graph

PDG(CFG{x},{y}
c) for some x ∈ Var that contains more than 2 nodes.

2. Γ ′(y) =
⊔

x∈X Γ (x), and there is no such path in PDG(CFG{x},{y}
c).

Proof (Proof of Proposition 4). The proof is by induction on the structure of c.

Assume that c = skip:
1. By the typing rule [skip], Γ = Γ ′. Hence, Γ (y) = Γ ′(y).
2. The node start is the only node in CFG skip with two outgoing edges, and,

hence, all control dependency edges in PDG(CFG
{x},{y}
skip) originate at start .

3. Node 1 (representing the skip-statement) has empty def and use sets. Hence,

PDG(CFG
{x},{y}
skip) contains no data dependency edges from or to Node 1, and

it contains an edge (in, out) if and only if x = y.

4. By (2) and (3), there is a path from in to out in PDG(CFG
{x},{y}
skip) if and

only if x = y, i.e., X = {y}.
5. Moreover, by (2) and (3) there is no path from start to out in the graph

PDG(CFG
{x},{y}
skip) that contains more than 2 nodes.

6. Hence, by (4) and (5), it suffices to show that Γ ′(y) = Γ (y) to conclude this
case, and Γ ′(y) = Γ (y) holds by (1).

Assume that c = z :=e:
1. By the same argument as in the case for skip, all control dependency edges

in PDG(CFG{x},{y}
z :=e) originate at start .

2. Be the definition of def and use sets, defc(1) = {z} and usec(1) = fv(e)
(where 1 is the node representing the assignment). Hence, by the definition of

data dependence there is a data dependency edge (in, 1) in PDG(CFG{x},{y}
z :=e)

if and only if x ∈ fv(e) and there is a data dependency edge (1, out) if and
only if y = z . Moreover, there is an edge (in, out) if and only if x = y and
x 6= z .

3. Assume that y = z .
(a) By (1) and (2), there is a path from in to out if and only if x ∈ fv(e) (the

path 〈in, 1, out〉). Hence, X = fv(e).
(b) Since node 1 is control dependent on start there is a path from start to

out that contains more than 2 nodes (the path 〈start , 1, out〉).

(c) Hence, we must show that Γ ′(y) = pc t
(⊔

x∈fv(e) Γ (x)
)
. This equality

holds due to the typing rules [assign] and [exp].
4. Assume now that y 6= z .

(a) By (1) and (2), there is a path from in to out if and only if x = y and
x 6= z (the path 〈in, out〉). Hence, X = {y}.

(b) Moreover, by (1) and (2) there is no path from start to out that contains
more than 2 nodes.

(c) Hence, we must show that Γ ′(y) = Γ (y). This holds due to the typing
rule [assign].

Assume that c = c1; c2:

1. By typing rule [seq] there is a domain environment Γ ′′ such that pc ` Γ{c1}Γ ′′

and pc ` Γ ′′ {c2} Γ ′.
2. Let X2 be the set of variables such that x ∈ X2 if and only if there is a

path from in to out in PDG(CFG{x},{y}
c2) By the induction hypothesis for k

and c2 (instantiating the environment with Γ ′′) one of the following conditions
is satisfied:
(a) Γ ′(y) = pc t

(⊔
x∈X2

Γ ′′(x)
)

and there is a path from start to out in the

graph PDG(CFG{x},{y}
c2) that contains more than 2 nodes, or

(b) Γ ′(y) =
⊔

x∈X2
Γ ′′(x), and there is no such path in PDG(CFG{x},{y}

c2).
3. For each z ∈ X2, let Xz be the set of variables such that x ∈ Xz if and only

if there is a path from in to out in PDG(CFG{x},{z}
c1). For each z ∈ X2, by

the induction hypothesis for c1 (instantiating the environment with Γ and the
variable with z) one of the following conditions is satisfied:
(a) Γ ′′(z) = pc t

(⊔
x∈Xz

Γ (x)
)

and there is a path from start to out in the

graph PDG(CFG{x},{z}
c1) that contains more than 2 nodes, or

(b) Γ ′′(z) =
⊔

x∈Xz
Γ (x), and there is no such path in PDG(CFG{x},{z}

c1).

4. By Proposition 2, there is a path from in to out in PDG(CFG{x},{y}
c1;c2) if

and only if there exists z ∈ Var such that there is a path from in to out in
PDG(CFG{x},{z}

c1) and a path from in to out in PDG(CFG{z},{y}
c2). Hence, it

follows from the definitions of X2 and Xz that X =
⋃

z∈X2
Xz .

5. We distinguish the cases (2a) and (2b). Assume firstly that (2a) holds.
(a) Due to (2a) and Proposition 2, for all z ∈ Var there is a path from start

to out in PDG(CFG{z},{y}
c1;c2) that contains more than 2 nodes. Hence, we

must show that Γ ′(y) = pc t
(⊔

x∈X Γ (x)
)
.

(b) Due to (2a), Γ ′(y) = pc t
(⊔

z∈X2
Γ ′′(z)

)
.

(c) Due to (3), for each z ∈ X2 either Γ ′′(z) = pc t
(⊔

x∈Xz
Γ (x)

)
or Γ ′′(z) =(⊔

x∈Xz
Γ (x)

)
holds.

(d) It follows from (b) and (c) that Γ ′(y) = pct
(⊔

z∈X2

⊔
x∈Xz

Γ (x)
)
. Hence,

by (4), Γ ′(y) = pc t
(⊔

x∈X Γ (x)
)
.

6. Assume now that (2b) holds.
(a) Due to (2b), Γ ′(y) =

⊔
z∈X2

Γ ′′(z).
(b) For each z ∈ X2, either (3a) or (3b) holds. We distinguish the cases that

(3b) holds for all z ∈ X2 and that (3b) does not hold for some z ∈ X2.

(c) Assume firstly that (3b) holds for all z ∈ X2.

i. By Proposition 2, PDG(CFG{x},{y}
c1;c2) does not contain a path from start

to out that contains more than 2 nodes.
ii. For all z ∈ X2, it follows from (3b) that Γ ′′(z) =

(⊔
x∈Xz

Γ (x)
)
.

iii. From (a) and (ii) it follows that Γ ′(y) =
⊔

z∈X2

⊔
x∈Xz

Γ (x). Hence, by
(4), Γ ′(y) =

⊔
x∈X Γ (x).

(d) Assume now that there exists z ∈ X2 such that (3a) holds for z .
i. Hence, Γ ′′(z) = pc t

(⊔
x∈Xz

Γ (x)
)
.

ii. Moreover, PDG(CFG{x},{z}
c1) contains a path from start to out that

contains more than 2 nodes.
iii. Since z ∈ X2 there is a path from in to out in PDG(CFG{z},{y}

c2).

iv. By Proposition 2, (ii), and (iii), PDG(CFG{x},{y}
c1;c2) contains a path from

start to out that contains more than 2 nodes.
v. Due to (3), for each z ∈ X2 either Γ ′′(z) = pc t

(⊔
x∈Xz

Γ (x)
)

or

Γ ′′(z) =
(⊔

x∈Xz
Γ (x)

)
holds.

vi. From (a), (i), and (v), it follows that Γ ′(y) = pct
(⊔

z∈X2

⊔
x∈Xz

Γ (x)
)
.

Hence, by (4), Γ ′(y) = pc t
(⊔

x∈X Γ (x)
)
.

Assume that c = if (e) then c1 else c2 fi:

1. Let {z1, . . . , zl} = fv(e), and t = dom(z1) t . . . t dom(zl).
2. By the typing rule [if], there are environments Γ ′

1 and Γ ′
2 such that Γ ′ =

Γ ′
1 t Γ ′

2, pc t t ` Γ {c1} Γ ′
1, and pc t t ` Γ {c2} Γ ′

2.
3. For i ∈ {1, 2}, let Xi be the set of variables such that x ∈ Xi if and only if

there is a path from in to out in PDG(CFG{x},{y}
ci).

4. Applying the induction hypothesis for both k and c1 and k and c2 (instantiat-
ing the program counter security level with pctt), it follows that for i ∈ {1, 2}
one of the following two conditions is satisfied:
(a) Γ ′

i (y) = pc t t t
(⊔

x∈Xi
Γ (x)

)
and there is a path from start to out in

the graph PDG(CFG{x},{y}
ci) that contains more than 2 nodes, or

(b) Γ ′
i (y) =

⊔
x∈Xi

Γ (x) and there is no such path in PDG(CFG{x},{y}
ci).

5. It follows from Proposition 1 that there exists a path from in to out in the

graph PDG(CFG
{x},{y}
if (e) then c1 else c2 fi) if and only if there is such a path in the

graph PDG(CFG{x},{y}
c1) or in PDG(CFG{x},{y}

c2) (i.e., x ∈ X1 ∪ X2), or if

x ∈ fv(e) and there is a path from start to out in PDG(CFG{x},{y}
c1) or in

PDG(CFG{x},{y}
c2) that contains more than 2 nodes.

6. We do a case distinction on whether there exists a path from start to out

in the graph PDG(CFG
{x},{y}
if (e) then c1 else c2 fi) that contains more than 2 nodes.

Assume firstly that there is such a path.
(a) Hence, by Proposition 1, there is such a path in PDG(CFG{x},{y}

c1) or in

PDG(CFG{x},{y}
c2). Assume without loss of generality that there is such a

path in PDG(CFG{x},{y}
c1).

(b) Then, by (5), X = X1 ∪X2 ∪ fv(e).
(c) Moreover, by (4), Γ ′

1(y) = pc t t t
(⊔

x∈X1
Γ (x)

)
.

(d) Moreover, by (4), either Γ ′
2(y) = pc t t t

(⊔
x∈X2

Γ (x)
)

or Γ ′
2(y) =⊔

x∈X2
Γ (x).

(e) Hence, since Γ ′ = Γ ′
1 t Γ ′

2, it follows from (1), (c), (d), and (e) that
Γ ′(y) = pc t

(⊔
x∈X Γ (x)

)
.

7. Assume that there is no path 〈start , . . . , out〉 in PDG(CFG
{x},{y}
if (e) then c1 else c2 fi)

that contains more than 2 nodes.
(a) Hence, by Proposition 1, there is no such path in PDG(CFG{x},{y}

c1) or in

PDG(CFG{x},{y}
c2).

(b) In consequence, by (5), X = X1 ∪X2.
(c) Moreover, by (4), Γ ′

i (y) =
⊔

x∈Xi
Γ (x) for i ∈ {1, 2}.

(d) Hence, since Γ ′ = Γ ′
1 t Γ ′

2, it follows from (b) and (c) that Γ ′(y) =⊔
x∈X Γ (x).

Assume that c = while (e) do c1 od

1. Since pc ` Γ {while (e) do c1 od} Γ ′ is derivable it follows from typing rule
[while] that there exist k ∈ N and sequences Γ ′

0, . . . , Γ
′
k+1, Γ ′′

0 , . . . , Γ
′′
k , and

t0, . . . , tk such that the following hold (for 0 ≤ i ≤ k):
(a) Γ ′

0 = Γ ,
(b) Γ ′

k+1 = Γ ′
k = Γ ′,

(c) Γ ′
i `e ti {} ,

(d) pc t ti ` Γ ′
i {c1} Γ ′′

i , and
(e) Γ ′

i+1 = Γ ′′
i t Γ .

2. We say that a loop run of the loop while (e) do c1 od induces a dependency of
z ′ on z if one of the following two conditions is satisfied:

(a) there is a path from in to out in PDG(CFG{z},{z ′}
c1) or

(b) z ∈ fv(e) and there is a path from start to out in PDG(CFG{z},{z ′}
c1) that

contains more than 2 nodes.
3. Hence, by Proposition 3, x ∈ X if and only if there is a sequence of dis-

tinct variables z1, . . . , zl such that x = z1, zl = y , and the loop c induces a
dependency of zi+1 on zi for all i ∈ {1, . . . , l − 1}.

4. By the induction hypothesis and (1d) it follows that, for all z ′ ∈ Var and all
i ∈ N, one of the following holds, where Z is the set of all z such that there is

a path from in to out in PDG(CFG{z},{z ′}
c1):

(a) Γ ′′
i (z ′) =

(⊔
z∈Z Γ

′
i (z)

)
t pc t ti if there is a path from start to out in the

graph PDG(CFG{z},{z ′}
c1) that contains more than 2 nodes, and

(b) Γ ′′
i (z ′) =

⊔
z∈Z Γ

′
i (z) if there is no such path.

5. From (1c) and typing rule [exp] it follows that ti =
⊔

x∈fv(e) Γ
′
i (x).

6. From the definition in (2) and from (4) and (5) it follows that for all z ′ ∈ Var
one of the following holds, where Z ′ is the set of all z such that the loop c
induces a dependency of z ′ on z :
(a) Γ ′′

i (z ′) =
(⊔

z∈Z′ Γ ′
i (z)

)
t pc if there is a path from start to out in the

graph PDG(CFG{x},{z ′}
c1) that contains more than 2 nodes, and

(b) Γ ′′
i (z ′) =

⊔
z∈Z′ Γ ′

i (z) if there is no such path.
7. Hence, by (1e), it follows that for all z ∈ Var one of the following holds:

(a) Γ ′
i+1(z ′) =

(⊔
z∈Z′ Γ ′

i (z)
)
t pc t Γ (z ′) if there is a path from start to out

in PDG(CFG{z},{z ′}
c1) that contains more than 2 nodes, and

(b) Γ ′
i+1(z ′) =

(⊔
z∈Z′ Γ ′

i (z)
)
t Γ (z ′) if there is no such path.

8. Using (7) and starting with Γ ′(y) = Γ ′
k(y), we unfold the equation further

and further, thereby collecting the term Γ (x) for all x ∈ X on the right hand
side of the equation. As a result, the following holds:
(a) Γ ′(y) =

⊔
x∈X Γ (x)t pc, if, for any x ∈ Var , there exists z1, . . . , zk ∈ Var

and a path from start to out in PDG(CFG{x},{z1}
c1) that contains more than

2 nodes and paths from in to out in the graphs PDG(CFG{zi},{zi+1}
c1), and

(b) Γ ′(y) =
⊔

x∈X Γ (x) if such paths do not exist for any x ∈ Var .
9. But then, with Statement (2) of Proposition 3, it follows that

(a) Γ ′(y) =
⊔

x∈X Γ (x) t pc, if, there exists a path from start to out in the

graph PDG(CFG{zx},{y}
c) that contains more than 2 nodes, and

(b) Γ ′(y) =
⊔

x∈X Γ (x) if such a path does not exist.
This concludes the proof.

Proof (Proof of Lemma 1 from [MS13]). Lemma 1 from [MS13] follows from
Proposition 4 for pc = l .

2 Proof of Theorem 4 from [MS13]

To prove Theorem 4 from [MS13], we generalize the definition of PDG ||(CFGH,L
c)

to the form PDG ||(CFGI,O
c ,mds) where I,O are arbitrary sets of variables and

mds : Mod → P(Var) is a function that specifies modes before the execution
of c.

Definition 1. For c ∈ Com and mds : Mod → P(Var) we define the function
modesc,mds : (Nc ×Mod)→ P(Var) by x ∈ modesc,mds(n,m) if and only if for
all paths 〈start , . . . ,n〉 in CFGc one of the following two conditions is satisfied:
– there exists n ′ on the path such that c[n ′] acquires m for x , and for all nodes

n ′′ following n ′ on the path c[n ′′] does not release m for x , or
– x ∈ mds(m) and for all nodes n ′ on the path c[n ′] does not release m for x .

Definition 2. Let c ∈Com. Then PDG ||(CFGI,O
c ,mds) = (N , E ∪ E′) where

(N , E) = PDG(CFGI,O
c) and (n,n ′)∈E′ if and only if one of the following

holds:
1. n = in and there exist a variable x ∈ I ∩ usec(n ′), a node n ′′ ∈ N with x 6∈

modesc,mds(n ′′, asm-nowrite), and a path p from n ′′ to n ′ with x 6∈ defc(n ′′′)
for every node n ′′′ on p with n ′′′ 6= n ′′ and n ′′′ 6= n ′,

2. n ′ = out and there exist a variable x ∈ O ∩ defc(n ′), a node n ′′ ∈ N with
x 6∈ modesc,mds(n ′′, asm-noread), and a path p from n to n ′′ such that x 6∈
defc(n ′′′) for every node n ′′′ on p with n ′′′ 6= n and n ′′′ 6= n ′′, or

3. n ∈ {1, . . . , |c|}, c[n] ∈ Exp, and n ′ = out.

To prove Theorem 4 from [MS13], we establish the following more general
proposition.

Proposition 5. Let mds be a mode state, Λ be a partial environment that is
consistent with mds, and c ∈ Com. Assume that no partial environment Λ′

exists such that ` Λ {c} Λ′ is derivable in the type system from [MSS11]. Then
there exist x , y ∈ Var with Λ〈x 〉 = h and dom(y) = l and a path p of the form

〈in, . . . ,n, out〉 in PDG ||(CFG{x},{y}
c ,mds) where n ∈ {1, . . . , |c|} and one of

the following conditions is satisfied:

1. y ∈ def c(n), there is a node n ′ with y 6∈ modesc,mds(n ′, asm-noread), and a
definition of y at n reaches n ′ in CFGc, or

2. c[n] ∈ Exp.

Proof. The proof is by induction on the structure of the command c.

Assume that c = skip. Then ` Λ {c} Λ is derivable, which contradicts the
assumptions of the lemma.

Assume that c = x :=e. If x ∈ dom(Λ) then ` Λ{c}Λ′ is derivable for some Λ′

with rule [assign2]. In consequence, x 6∈ dom(Λ). Moreover, if dom(x) = h then
` Λ{c}Λ is derivable with rule [assign1]. In consequence, dom(x) = l . Moreover,
if Λ〈y〉 = l for all y ∈ fv(e) then ` Λ{c}Λ would be derivable with rule [assign1].
In consequence, there exists y ∈ fv(e) with Λ〈y〉 = h.

Since y ∈ fv(e) it follows that y ∈ usec(1), and, hence, the pair (in, 1) is

an edge in PDG(CFG{y},{x}
c). In consequence, the pair is an edge in the graph

PDG ||(CFG{y},{x}
c ,mds).

Since x 6∈ dom(Λ), Λ is consistent with mds, and dom(x) = l , it follows
that x 6∈ mds(asm-noread). In consequence, x 6∈ modesc,mds(stop, asm-noread).
Moreover, the definition of x at Node 1 reaches stop in CFGc . Hence, (1, out) is

an edge in PDG ||(CFG{y},{x}
c ,mds), and Condition (1) is satisfied for this edge.

Hence, 〈in, 1, out〉 is a path in PDG ||(CFG{y},{x}
c ,mds) that satisfies all re-

quired conditions.

Assume that c = c1; c2. If there exist Λ′′ and Λ′ such that ` Λ {c1} Λ′′

and ` Λ′′ {c2} Λ′ are derivable then ` Λ {c} Λ′ is derivable with rule [seq].
In consequence, there does not exist Λ′′ and Λ′ such that ` Λ {c1} Λ′′ and
` Λ′′ {c2} Λ′ are derivable. We distinguish the two cases (1) that there is no Λ′′

such that ` Λ {c1} Λ′′ is derivable, and (2) that if ` Λ {c1} Λ′′ is derivable for
some Λ′′ then there is no Λ′ such that ` Λ′′ {c2} Λ′ is derivable.

1. Assume that there is no Λ′′ such that ` Λ {c1} Λ′′ is derivable.
(a) By the induction hypothesis there are x , y ∈ Var with Λ〈x 〉 = h and

dom(y) = l and a path p from in to out in PDG ||(CFG{x},{y}
c1 ,mds) such

that Condition (1) or Condition (2) is satisfied for the one-but-last node

of p. To determine a path from in to out in PDG ||(CFG{x},{y}
c ,mds) we

distinguish between whether Condition (1) or Condition (2) is satisfied for
that node.

i. Assume that y ∈ def c1(n), that there exists a node n ′ with
y 6∈ modesc1,mds(n ′, asm-noread), and that a definition of y at n reaches
n ′ in CFGc1 .
It follows from y ∈ def c1(n) that y ∈ def c1;c2(n). It follows from
y 6∈ modesc1,Λ(n, asm-noread) that y 6∈ modesc1;c2,Λ(n, asm-noread).
Moreover, since a definition of y at n reaches n ′ in CFGc1 , it also
reaches n ′ in CFGc .
Hence, the last edge (n, out) of p is an edge in PDG ||(CFG{x},{y}

c ,mds).

Thus p is a path in PDG ||(CFG{x},{y}
c ,mds).

ii. Assume that n ∈ {1, . . . , |c1|} and c1[n] ∈ Exp. Then the last edge

(n, out) of p is an edge in PDG ||(CFG{x},{y}
c ,mds). Thus p is a path in

PDG ||(CFG{x},{y}
c ,mds).

2. Let Λ′′ such that ` Λ {c1} Λ′′ is derivable, and such that there is no Λ′ for
which ` Λ′′ {c2} Λ′ is derivable.
(a) Define the function mds ′′ : Mod → P(Var) by

mds ′′(m) = modesc1,mds(stop,m) It follows from the definition of modesc,mds

and the typing rules that Λ′′ is compatible with mds ′′.
(b) By the induction hypothesis there exist z , y ∈ Var with Λ′′〈z 〉 = h and

dom(y) = l such that there is a path p2 in PDG ||(CFG{z},{y}
c2 ,mds ′′) that is

of the form 〈in, . . . ,n, out〉 with n ∈ {1, . . . , |c2|} and where Condition (1)
or Condition (2) is satisfied for the edge (n, out).

(c) Let Γ be the unique environment such that l ` Λ〈·〉 {c1} Γ is derivable
in the type system from [HS06]. Then, by Lemma 1 from [MS13], Γ (z) =⊔

x∈X Λ〈x 〉 where X contains all x ∈ Var such that there exists a path from

in to out in PDG(CFG{x},{z}
c1). We denote this path with px for x ∈ X.

Like in the proof of Lemma 1 in [MS13], it follows from the existence of
the paths px and p2 that there exists a path p from in to out in the graph
PDG ||(CFG{x},{y}

c1;c2 ,mds). That Condition (1) or Condition (2) is satisfied
for the last edge in this path p follows from the construction of p and from
(a) and (b). Hence, we can conclude this case if there exists x ∈ X with
Λ〈x 〉 = h.
Assume now that Λ〈x 〉 = l for all x ∈ X. Then Γ (z) = l . It follows from
Γ (z) = l , Λ′′〈z 〉 = h, and the derivability of l ` Λ〈·〉 {c1}Γ and ` Λ {c1}Λ′′

that dom(z) = h and z 6∈ dom(Λ′′). Then, since Λ′′ is consistent with
mds ′′, z 6∈ mds ′′(asm-nowrite). Let n ′ be a node such that z ∈ usec1(n ′)
and such that a definition of z at n ′ reaches stop in CFGc1 , or let n ′ = out
if no such node exists. Then, by Definition 2 the pair (in,n ′) is an edge in

PDG ||(CFG{x},{z}
c1 ,mds) for any x , because the pair (n ′, out) is an edge in

PDG ||(CFG{x},{z}
c1 ,mds) by construction of n ′. Hence, 〈in,n ′, out〉 is a path

in PDG ||(CFG{x},{z}
c1 ,mds), and we can conclude as in the above case for

Λ〈x 〉 = h

Assume that c = if (e) then c1 else c2 fi. Since there is no partial environment
Λ′ such that ` Λ {c} Λ′ is derivable in the type system, by the typing rule [if]

one of the following conditions is satisfied: Λ〈e〉 = h, or there is no Λ′ such that
` Λ {c1} Λ′ is derivable, or there is no Λ′ such that ` Λ {c2} Λ′ is derivable.
1. Assume that Λ〈e〉 = h. Then there exists x ∈ fv(e) such that Λ〈x 〉 = h.

Hence, (in, 1) is an edge in PDG(CFG{x},{y}
c). In consequence, (in, 1) is an

edge in PDG ||(CFG{x},{y}
c ,mds).

Let y be a variable with dom(y) = l . Then the pair (1, out) is an edge in

PDG ||(CFG{x},{y}
c ,mds) because c[1] ∈ Exp.

Hence, 〈in, 1, out〉 is a path from in to out in PDG ||(CFG{x},{y}
c ,mds), and

Condition (2) is satisfied for the last edge (1, out).
2. Assume that there is no Λ′ such that ` Λ {c1} Λ′ is derivable. Then, by

the induction hypothesis for c1, there are x , y , and a path p1 in the graph
PDG ||(CFG{x},{y}

c1 ,mds) with the properties stated by the lemma. But then

one obtains a path p in the graph PDG ||(CFG{x},{y}
c ,mds) with the properties

required by the lemma by increasing each node n ∈ {1, . . . , |c1|} in p1 by 1.
3. Assume that there is no Λ′ such that ` Λ {c2}Λ′ is derivable. The proof is as

in the previous case, exploiting the induction hypothesis for c2.

Assume that c = while (e) do c1 od: Since there is no Λ′ such that the judgment
` Λ {while (e) do c1 od} Λ′ is derivable, by the typing rule [sub] there is no Λ′′

with Λ v Λ′′ v Λ′ such that ` Λ′′ {while (e) do c1 od} Λ′′ is derivable. I.e., by the
typing rule [while], for all Λ′′ with Λ v Λ′′ v Λ′ one of the following conditions
is satisfied: Λ′′〈e〉 = h or ` Λ′′ {c1} Λ′′ is not derivable.
1. Assume that Λ′′〈e〉 = h. Then the proof is as in the case for conditionals,

defining p = 〈in, 1, out〉.
2. Assume that ` Λ′′ {c1} Λ′′ is not derivable. Then, by the induction hypoth-

esis for c1, there are x , y ∈ Var and a path p1 in PDG ||(CFG{x},{y}
c1 ,mds)

with the properties stated by the lemma. But then one obtains a path p in
PDG ||(CFG{x},{y}

c ,mds) with the properties required by the lemma by in-
creasing each node n ∈ {1, . . . , |c1|} in p1 by 1.

Now we prove Theorem 4 from [MS13].

Proof. The proof is by contradiction. Assume that that there is no partial en-
vironment Λ′ such that ` Λ0 {c} Λ′ is derivable. Then, by Proposition 5, there
exist x , y ∈ Var with Λ0〈x 〉 = h and dom(y) = l , such that there is a path from

in to out in PDG ||(CFG{x},{y}
c ,mds0).

By the definition of Λ0 we obtain that dom(x) = h.

Hence, the path in PDG ||(CFG
{x},{y}
c) ,mds0) is also a path in the PDG with

multi-threaded dependencies for high inputs and low outputs PDGH ,L(CFGc).
In consequence, c is not accepted by the PDG-based analysis for threads.

3 Derivation Rules for the Judgment 〈c,mem〉 ⇓ mem ′

The derivation rules for the judgment 〈c,mem〉 ⇓ mem ′ are defined in Figure 1,
where 〈e,mem〉 ⇓ v denotes that expression e ∈ Exp evaluates to value v ∈ Val
in memory mem ∈ (Var → Val).

〈skip,mem〉 ⇓ mem

〈e,mem〉 ⇓ v

〈x :=e,mem〉 ⇓ mem[x 7→ v]

〈c1,mem〉 ⇓ mem ′ 〈c2,mem ′〉 ⇓ mem ′′

〈c1; c2,mem〉 ⇓ mem ′′

〈e,mem〉 ⇓ True 〈c1,mem〉 ⇓ mem ′

〈if (e) then c1 else c2 fi,mem〉 ⇓ mem ′
〈e,mem〉 ⇓ False 〈c2,mem〉 ⇓ mem ′

〈if (e) then c1 else c2 fi,mem〉 ⇓ mem ′

〈e,mem〉 ⇓ False

〈while (e) do c od,mem〉 ⇓ mem

〈e,mem〉 ⇓ True 〈c,mem〉 ⇓ mem ′

〈while (e) do c od,mem ′〉 ⇓ mem ′′

〈while (e) do c od,mem〉 ⇓ mem ′′

Figure 1. Derivation rules for the judgment 〈c,mem〉 ⇓ mem ′

References

[HS06] S. Hunt and D. Sands. On Flow-Sensitive Security Types. In ACM Symposium
on Principles of Programming Languages, pages 79–90, 2006.

[MS13] H. Mantel and H. Sudbrock. Types vs. PDGs in Information Flow Analysis.
In Proceedings of the 22nd International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR), volume 7844 of LNCS, pages 106–
121, Leuven, Belgium, 2013. Springer. To appear.

[MSS11] H. Mantel, D. Sands, and H. Sudbrock. Assumptions and Guarantees for
Compositional Noninterference. In IEEE Computer Security Foundations
Symposium, pages 218–232, 2011.

