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Abstract

In this report, we investigate how PMD can be tailored to check Java
code with respect to secure coding guidelines. We chose PMD among four
publicly available tools for the static analysis of Java code: FindBugs,
Hammurapi, Jlint, and PMD. First, we describe our selection process,
which includes an overview of these four tools with a focus on their archi-
tecture, their functionality, and their intended application areas. Second,
we present an implementation of a so-called rule for PMD so that Java
programs can be checked with respect to two secure coding guidelines from
the CERT Oracle Secure Coding Standard for Java.
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1 Introduction

Secure coding guidelines describe good programming practices that support de-
velopers in improving the quality of code so that the resulting software is more
secure. Determining whether some given code actually complies with secure
coding guidelines easily becomes non-trivial, especially if the code consists of
thousands of lines of code. Thus tool support is desirable to check code with
respect to secure coding.

In this report, we investigate how determining whether some given code
complies with secure coding guidelines can be supported by a publicly available
tool for the static analysis of code. Since there exist hundreds of secure coding
guidelines (e.g., [1, 10, 12]), we focus our investigation by choosing among the
available secure coding guidelines.

As a starting point for this report, we choose the CERT Oracle Secure Coding
Standard for Java [10], which is fairly recent and actively maintained. Within
this standard, we choose the first secure coding guideline that targets a specific
method from the Java library:

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec ()
method.

Our reason for choosing a guideline that targets a specific method is that we
expect the analysis to be simpler if a specific method is targeted instead of
methods that are characterized more abstractly. For example, some guidelines
characterize methods by their functionality such as methods for “logging”, “nor-
malization”, or “canonicalization”; it seems more difficult to identify calls of such
methods compared to identifying calls of Runtime.exec ().

In order to get an impression how an analysis can be generalized to guide-
lines that do not target a specific method, we in addition choose the following
guideline:

IDS03-J. Do not log unsanitized user input.

In Section 2, we describe our selection of a publicly available tool as a basis to
implement an analysis with respect to these two secure coding guidelines. This
includes an overview of four tools (FindBugs, Hammurapi, Jlint, and PMD)
with a focus on their architecture, their functionality, and their intended appli-
cation areas. In Section 3, we document our implementation of an analysis with
respect to these two secure coding guidelines. Section 4 concludes with some
summarizing remarks.

2 Tool Selection

In this section, we give an overview of four tools: FindBugs, Hammurapi, Jlint,
and PMD. These tools are listed as tools for the static analysis of Java code
among several others in [13, 15]. All of these four tools are freely available,
open-source, and provide a reasonable amount of documentation to work with.
Other tools mentioned in [13, 15] may as well share these properties and thus
may be valuable for secure coding, but we restrict ourselves to these four tools
in this report.



Two of the tools (Hammurapi and PMD) analyze Java source code directly,
while the other two tools (FindBugs and Jlint) operate on Java bytecode. Al-
though the latter tools do not analyze source code, the results of analyses can
be linked to source code. Thus users of all tools have the possibility to interpret
the results of analyses in terms of the source code.

All tool descriptions follow the same structure, as far as the given documen-
tation and the offered functionality allow. First, a short overview is given. The
section “Architecture” then describes the architecture of the tool. The section
“Functionality” contains information on what can be done with the tool. “Us-
age” states how users can interact with the tool, including available interfaces,
and customization options. Known limitations are listed in the “Limitations”
section. The section “Project” summarizes the current state of development (as
at July 2012) and potential future directions. Last, “Impression” contains a
subjective summary of pros and cons for each tool.

The descriptions of the tools are based on the respective documentation,
including documentation in the source code of the tools. For this report, we
structured the descriptions uniformly as a basis for our selection of a tool for
secure coding analyses.

All tools make use of some kind of rules that describe certain program be-
havior or characteristics that are generally associated with erroneous behavior,
bad style, or bad practice. The tools then analyze programs to detect pat-
terns described by rules and report matches to the user. The terminology varies
among tools, but in this report the words rule and wviolation are used to re-
fer to such descriptions of erroneous program behavior and code that matches
them, respectively. Accordingly, the term ruleset refers to a collection of rules,
grouped by theme or by some other criteria.

2.1 FindBugs

FindBugs is an open-source tool for static analysis of Java bytecode and is
released under LGPL. It is written in Java and comes with a stand-alone GUI.
A command line interface and plugins for common IDEs are also available. It
aims for the detection of bugs “that matter” and tries to advocate the usage
of static analysis in software development by making it more accessible. The
rules range from general bad practices to the correctness of multithreading and
vulnerabilities to attacks. In addition to bug detection, a cloud service provides
collaborative prioritization and discussion of bugs.

Architecture

FindBugs uses Apache Commons BCEL! (Byte Code Engineering Library) to
analyze Java bytecode files. Using a Visitor pattern [7], FindBugs notifies all
rules of the fact that an analysis has started and then steps through bytecode
instructions, passing opcodes to rules for inspection.

A plugin system allows one to extend FindBugs by placing jar files into a
plugin subdirectory of the installation and including the path into the config-
uration file. This is also a way to include custom rules into FindBugs.

Thttp://commons.apache.org/bcel/
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Own rules (called “bug descriptors” or “bug patterns” in FindBugs) can be
developed by subclassing one of FindBugs’ base classes for rules. It is also
possible to use implementations that use the ASM? framework for analysis.

The framework also contains algorithms that calculate call graphs and data
flows; however, their details seem not to be documented.

Functionality

FindBugs in its stand-alone GUI version can be run directly from the website via
Java Webstart or downloaded for offline use. A plugin for Eclipse is also available
directly from the developers of FindBugs. A stable version, release candidates
and nightly builds of the plugin can be downloaded directly or via an update
site. Plugins for Netbeans, IntelliJ IDEA, Ant, and Maven are provided from
third-party development teams.

Rules are provided for a variety of bugs, including rather elaborate cases
where the program is analyzed across method boundaries and across class bound-
aries. Discovered bugs are given a rank ranging from 1 to 20 (1 being the highest
concern). The ranks are grouped into rougher buckets “scariest”, “scary”, “trou-
bling”, and “of concern” for easy filtering.

FindBugs analyses class files, but is capable of displaying detected bugs in
the source code for ease of readability, given a source code directory is provided.
Results can be directly displayed in the stand-alone GUI or in the respective
IDE. Also, results can be exported to XML, HTML, Emacs, and xdocs (for
Apache Maven) formats.

FindBugs is distributed with many rules that are divided into eight categories.
Categories in FindBugs do not necessarily group similar rules together. Instead,
the categories “Bad Practice”, “Correctness”, and “Dodgy Code” differ in the
likeliness of a rule violation constituting an actual bug. The remaining categories
organize rules by theme. Roughly 400 rules are included in FindBugs and are
organized into the following categories:

Correctness. Rules in this category aim to detect actual bugs and thus
try to minimize false positives.

Correctness bugs include wrong type handling like casts that are guaranteed
to fail, or instanceof checks that are always true or false, respectively. Also
detected is null dereferencing that seems certain to occur, should control reach
the code. Likely logic errors are detected where statements do not have an effect
or calculation will always have the same result.

Rules also perform correctness checks which are simply not covered by the
compiler: the creation of self-containing collections, invalid regular expressions
and format strings, apparent infinite loops, and loss of precision when operating
on numbers.

Bad programming practices are detected with regards to Java naming con-
ventions that constitute more than bad style, like method names that are easily
confused with popular Java methods and might accidentally shade them or
might have been intended to override them. Implementations of equals () that

?http://asm.ow2.org/
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appear to be irreflexive, asymmetric, or otherwise contradicting the specification
of proper implementations of equals () are reported.

Bad Practice. Bad Practice rules detect “violations of recommended and
essential coding practice” that may result in bugs, but accuracy of detection may
be lower than of Correctness rules or some developers might not care about fixing
bad practices as much as others.

Rules include conventions that are not compiler-checked but can easily re-
sult in errors, like wrong implementations or usage of methods from the class
Object (equals() and hashCode ()) or from special interfaces (Comparable
and serializable), wrong handling of well-known APIs like Swing, ignoring
return values from methods known to not have any side effects, and inappropri-
ate exception handling.

Some rules of a similar nature to those in the Correctness category are in-
cluded, but apparently for the rules in the Bad Practice category, FindBugs is
less confident in actual bugs being present; i.e., false positives are more likely.

Dodgy Code. Dodgy code is written in a confusing way and is therefore
less transparent and robust. The patterns are similar to those in the Correctness
and Bad Practice categories, but more false positives are accepted.

Experimental. Experimental rules use alternative implementations to rules
already present in other categories, or they are new rules that remain to be thor-
oughly tested before recommending their use.

Malicious Code Vulnerability. Code that is vulnerable to misuse by
interacting components is reported along with some advice on which idioms
should be used instead. This includes the proper protection of ClassLoaders,
passing references of mutable objects around, and usage of proper visibility
modifiers as well as the £inal keyword.

Multithreaded Correctness. FindBugs supports elaborate rules to de-
tect errors in synchronization and thread safety.

Apart from the detection of incorrect idioms like double checked locking,
several other cases of inconsistencies in synchronization and failed attempts
of synchronization are detected. Other rules identify incorrect thread behavior,
especially the correct use and interaction of methods like wait () and notify ().

Performance. Rules in the Performance category do not point out actual
bugs in the strict sense, but rather program behavior that is inefficient.

Examples include unnecessary boxing, unboxing, and conversion between
types, explicit garbage collection, the usage of constructors for string or num-
ber types like Double. Unused fields and methods are also pointed out.

Security. Security rules detect the use of unsanitized external (and there-
fore probably dangerous) data for HTTP communication or in SQL statements.



Usage

For the analysis, the user provides one or more paths that contain Java class
files. The analysis of archived classes in zip, jar, ear, and war files is also
possible. Additionally, auxiliary paths can be given that contain classes referred
to in the code under analysis. This allows reasoning over class hierarchies.

Analysis results can be saved and loaded later, hierarchically organized, fil-
tered using different criteria, and annotated to aid the review process. Alterna-
tively, plugins integrate display and browsing into an IDE.

FindBugs allows the user to define custom filters. They are defined using
a special XML format. Apart from the usual possibility to filter by bugs and
bug ranks, FindBug filters can also define elaborate requirements concerning
affected packages, classes, methods, fields, and variable names.

A few properties can be passed to FindBugs on the command line to cus-
tomize the analysis. For example, one parameter tells FindBugs to take asser-
tions into consideration when determining data ranges, while another parameter
tells FindBugs to consider comments in otherwise empty blocks or switch cases
as valid implementations of the functionality for this case. A full list of switches
is given in the documentation.?

Without the implementation of specific rules, the scope of the analysis can be
expanded by placing annotations, such as @NonNull, in front of elements under
inspection. FindBugs will then attempt to uncover violations of the introduced
restriction. A full list of annotations is available in the documentation.*

Additional rules can be implemented in Java by subclassing the respective
FindBugs base classes for rules. To include them into FindBugs, a jar file is to
be created and declared as a plugin. Understanding of Java bytecode is needed
for the implementation of rules.

In addition to the analysis of code, FindBugs comes with tools that perform
data mining on the results of analyses. For that, a history of results can be
recorded and saved. A tool named filterBugs and several other command
line tools can then be used to crawl such recordings for interesting data.®

Limitations

No limitations are apparent or explicitly documented for FindBugs. A bug
tracker for current issues is available on the project’s Sourceforge page.5

Project

FindBugs was created by Bill Pugh and David Hovemeyer and is now developed
and maintained at the University of Maryland by Bill Pugh and a team of
volunteers.

The current version of FindBugs is version 2 and dates to December 20,
2011. All resources are available on the tool’s website.” There is also a writ-
ten documentation, along with several recordings of talks, slides, and various

3http://findbugs.sourceforge.net/manual/analysisprops.html
4http://findbugs.sourceforge.net/manual/annotations.html
Shttp://findbugs.sourceforge.net/manual/datamining.html
bnttp://sourceforge.net/tracker/?group_id=96405
"http://findbugs.sourceforge.net/
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publications, although the content does not necessarily keep up with the im-
plementation. The documentation is concise and focuses mainly on practical
aspects of installing, configuring, and running FindBugs.

The project showed regular commitment in the past and continues to be
developed further. The developers report having used the tool successfully to
discover and to report bugs in the Java API and in Google’s codebase.

Impression

FindBugs makes a very solid impression regarding precision and usefulness. It
has good user interfaces and is very flexible. Its sparse technical documentation
is a downside. A very interesting aspect of the tool is its direction towards
productivity and practical applicability.

2.2 Hammurapi

Hammurapi is a freely available tool written in Java and released under GPL. It
can be used for the analysis of Java source code (and allegedly also of any other
language by providing additional parsers; only one parser for Java is provided,
though). Rules can check code for certain characteristics and can also gener-
ate metrics. The tool is developed with enterprise scale applications in mind.
Hence, it offers integration into several development phases, from IDE and build
integration to the distribution of analysis results over the network.

Architecture

Hammurapi is built in a modular fashion, dividing the program into the core
API, language modules for parsing, inspectors (can be roughly understood as
rules), reporters (for rendering), and a number of auxiliary libraries.

The tool includes two other libraries by the Hammurapi Group, namely
Mesopotamia® for parsing Java source code, and Hammurapi Rules,” a JSR-94-
compatible'® engine responsible for the formulation of rules and for the inference
of non-compliance.

Java source code is parsed into an abstract syntax tree (AST) that is later
converted into a heterogeneous tree that represents actual Java constructs. This
representation is used by inspectors to detect problems. Inspectors may also
generate metrics or calculate and set intermediate results that can be accessed
by other inspectors. This process is called “chaining”.

Rules can implement simple checks on the AST, but they can also be used
to infer facts about the program. Inferred facts can, in turn, be used by other
rules for a more detailed or for a more precise analysis. Rules can be developed
in Java and plugged into Hammurapi. Thorough documentation with examples
is part of the Hammurapi distribution.

8http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/
mesopotamia/index.html

ttp://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/
products/hammurapi-rules/index.html

10 Java Rule Engine API, see http://www.jcp.org/en/jsr/detail?id=94
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Functionality

Hammurapi is aimed at enterprise-scale development to provide code quality
baselines. While developers can use IDE plugins to have their code checked
at development time, Ant Tasks also check compliance in the version control
systems. Projects leads and quality assurance teams can provide rules and
modify rules as requirements develop or change.

Additionally, intermediate results (e.g., parsed files or review results) are
saved into databases and can be distributed easily. Hammurapi includes web
services that are capable of providing results for display and download. Different
components of Hammurapi can be installed on different machines.

Hammurapi comes with a set of 96 predefined rules. These rules are organized
into 8 categories:

Legal. There are two rules in the Legal category, which check for the pres-
ence of copyright information in every source file and, in an outsourcing scenario,
verify that the developing organization does not put its name into the source
code.

Exception Handling. Rules for Exception Handling check that the code
does not throw exceptions that are too general, that the catch block is never
empty, that the throws clause is not too long, and that re-thrown exceptions are
properly constructed. It is also possible to provide a list of approved exceptions
that are permitted to appear in the throws clause.

Coding Guidelines. Coding guidelines check for compliance with coding
standards such as naming conventions and conventions on the order of modifiers,
or they impose hard limits on the maximum number of literals for numbers, lit-
erals for strings, parameters to a method, lines of code per file, depth of block
nesting, and on cyclomatic complexity. They further check that package decla-
rations are present and that no unnecessary imports exist. Furthermore, code
is detected that can be expressed in a shorter way. This includes comparisons
with boolean literals, unnecessary braces, and empty blocks.

Other rules detect bad choices of classes; e. g., Vector instead of other collec-
tions, or StringBuffer in single-threaded applications instead of St ringBuilder.
Some rules encourage to use collections instead of arrays in general.

There are some rules that might be interpreted to be controversial. For ex-
ample, the use of Java’s ternary operator ?: is discouraged and for expressions
need to contain all three parts (initialization, condition, and update).

Threading and Synchronization. Rules of this category check rather
superficially for bad style in concurrent programming: Classes extending Thread
should implement run (), synchronize should be used at block rather than at
method level, notifyall () should be preferred to notify (), Thread.yield()
should not be used at all, and wait () should be called only inside loops.

Logging. The Logging category contains exactly one rule that states that
System.out and System.err should not be used for logging.



Documentation. There is one rule in the Documentation category that
checks the correctness and completeness of JavaDoc comments.

Potential Bugs. Rules from the Potential Bugs category indicate typical
sources of bugs; e.g., switch statements that do not contain breaks or lack
a default case, comparison of objects by == and != instead of equals, or
the invocation of an abstract method from the constructor (which can result in
subclasses working on incompletely constructed objects).

Another set of rules requires the programmer to avoid shadowing superclass
fields, reassigning formal parameters (that should best be declared final), or
performing assignments inside conditionals.

When overriding equals (), hashCode () should be overridden as well, and
vice versa and implementations of clone () should invoke super.clone ().

Performance. Some operations in Java are possible, but discouraged due
to performance reasons. Such cases include the construction of Bigbecimals
with the values 0 and 1 (they are already predefined constants in BigDecimal)
and the explicit construction of Strings and Booleans. Also, it should be
avoided to call system.gc () explicitly.

One rule detects operations on immutables that ignore the return value.
Although this is a performance error in that such an operation is void, it is
more likely a programming error.

Usage

Developers can check their projects by running Hammurapi on their projects
from within Eclipse. Rulesets can be created by providing an XML configuration
file. As for version 5, there is no way to ignore or set aside specific violation
reports. Developers can create additional rules by implementing them in Java.
In a similar fashion, any desired output format can be achieved by implementing
a custom reporter.

Limitations

The documentation of version 5.6.0 documents known limitations:

e Not all cases of generic types are resolved correctly, i. e., objects are some-
times considered to be of type oObject instead of their actual (known)

type.
e There are difficulties handling vararg arguments.

e The API for extracting the usage of types is incomplete.

Project

Hammurapi is developed by the developed by the Hammurapi Group. The
current stable version 5.7.0 is available from the old website!!, and an experi-
mental version 6.3.0 is available from the new website.!? Version 6, however, is
in development stadium.

Hhttp://hammurapi.biz/
2http://hammurapi . com/
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All necessary components are documented to be packed into an Eclipse up-
date site. While this works as promised for an update site included in the
distributable of version 5.7.0, we could not observe any effects on the Eclipse
menu or on the Eclipse functionality when installing from the 6.3.0 update site.
Documentation for Hammurapi 5 can be found in the Hammurapi folder after
installation.

Hammurapi Rules, responsible for validation, is in the process of being re-
placed by a system called Event Bus. Hammurapi Rules is still being used in
Hammurapi 5, though. In the future, Hammurapi is going to be rebuilt using
the Whole Brain Programming approach,'? therefore Hammurapi 6 might have
been discontinued already. Although information on future directions is avail-
able, there is no clear indication of whether the project is active or when it will
receive updates.

Impression

Hammurapi is a very complex tool. Probably, this is due to the intended use in
a distributed enterprise development environment. This complexity leads to a
lot of overhead for extension and configuration, where extensive XML files need
to be created to configure the components.

The documentation is rich and includes many technical and conceptual de-
tails. However, sometimes the documentation neglects the practical aspects of
using Hammurapi.

2.3 Jlint

Jlint is a free command line tool released under GPL v2.0. It is written in C++
and analyzes Java bytecode for common programming errors. It is built upon
AntiC, an analyzer for C and C++, relying in parts on Java’s C heritage and
extending the analysis by reasoning over Java semantics to check more complex
and more specific Java rules. Debug information present in class files is used
to report detected violations with source files and line numbers. Results are
written into text format and can be viewed directly or using Emacs (the output
follows Emacs’ default format to encode file names, line numbers and messages).
A third-party Eclipse plugin is available from Sourceforge.'*

Architecture

Jlint consists of two parts: firstly, the Jlint core, a semantic analyzer for Java
bytecode, and secondly, AntiC, a program that checks Java sources for C-style
programming errors.!®

While AntiC performs checks on syntax level, Jlint relies on local and global
data flow analyses to determine and to reason over possible values of variable.
It also builds a call graph to uncover race conditions.

Bhttp://doc.hammurapi.com/dokuwiki/doku.php?id=products:whole_brain_
programming:start

Mnttp://sourceforge.net/projects/jlinteclipse/

15The term “C-style programming errors” means errors that Java shares with C/C++ and
that result from certain language idiosyncracies, such as the accidental comparison of Strings
with == and unintended fallthrough in switch blocks due to missing break statements.

10
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In the project, two files (antic.c and jlint.cc) account for the majority
of the program logic and mostly consist of nested if-else-expressions. It is
therefore hard to identify what Jlint actually does. Rulesets are hardcoded
into these files and hence not easily extendible or configurable apart from the
on/off-switches that Jlint takes as parameters.

Functionality

Jlint can be used to check Java programs (although AntiC can also check
C/C++), by providing a directory or class file archives as parameters to a com-
mand line call. A list of 52 checks performed by AntiC and Jlint can be found
in the Jlint manual:

AntiC. AntiC is used to detect source code that is syntactically correct, but
may have different semantics from what the programmer had in mind. All
detected problems can be grouped into three categories.

Suspicious Literals. Literals are declared suspicious when they look un-
intended. For example, using octal representation of characters in strings is
limited to certain digits: "\127" is correct and yields a w, while "\128" yields
a new line feed and the character 8, because 128 is not a valid octal digit, but
the prefix 12 is.

Other errors include the usage of unknown control sequences in strings (like
"\x") and multi-byte characters (like *ab’), which are actually compile time
errors in Java. Also, the use of 1 (lowercase L) in variable names is reported,
because it is easily confused with and often even indistinguishable from 1 (one).

Operator Priorities. Arithmetic expressions that omit braces are con-
sidered potentially ambiguous when operator priorities are non-intuitive. For
example, (1 << 2 - 1), equals (1 << (2 - 1)), but (1 << 2 | 1), though
similar, equals ((1 << 2) | 1).

Blocks and Statement Bodies. Regarding blocks, there are two main
cases that often lead to errors. For many statements, braces around the body
may be omitted when the body consists of a single expression. When indentation
indicates that the programmer intended a block to span several statements, but
the actual block is shorter, there are probably braces missing. The second case
is unintentional fallthrough due to a missing break statement in case clauses
of a switch statement.

Jlint Core. The Jlint core performs a semantic analysis to determine possible
bugs in synchronization, inheritance, and data flow.

Synchronization. Java’s multi-threading is built upon shared data and
locks. Access to shared data has to be synchronized among accessing threads
to ensure thread-safe execution. In practice, this has proven to be difficult and
error-prone, especially because correct synchronization is not checked by the
compiler and because bugs tend to be non-deterministic.

11



Erroneous synchronization can result in race conditions (where data is con-
currently modified by different threads in an unsafe manner) and in deadlocks
(where two threads block program execution, because they wait for each other
to complete). Jlint builds call-graphs and tries to detect unsynchronized access
to shared data and call sequences that may result in deadlock situations.

Inheritance. Subclasses can hide members of their superclasses by using
the same name (shadowing) or method signature (overriding). In Java, no ad-
ditional effort (e.g., no special modifier) is needed and errors may easily result
by using existing names or by providing incorrect method signatures.

Jlint detects cases where local variables are accessed and where it is likely
that the programmer meant shadowed members instead. For overriding, Jlint
finds methods that use the same name as a method in a superclass, but that do
not override the superclass member, because the method signature differs. It
also makes sure that finalize calls include a call to super.finalize () as
documented in the Java API Specification [6].

Data Flow. During data flow analysis, domains of possible values for vari-
ables are calculated and used to uncover likely errors. For example, cases where
variables are always null, conditions always yield the same result (due to pos-
sible ranges of operands), and instructions may lead to overflow or type trunca-
tion,'¢ are considered erroneous.

Usage

Jlint is called from the command line by passing it class file directories or
archives. Some parameters can be provided to influence Jlint’s behavior. It
is possible to enable and to disable specific error messages or whole categories
of errors by specifying error codes or category names on the command line. It
is furthermore possible to specify a file with previous results that will then not
be reported again.

A programmer has possibilities to influence Jlint’s output concerning switch-
statements. By placing a comment containing “break” (as in “no break”) or “fall”
(as in “fall through”), Jlint’s messages about possibly missing break statements
are suppressed.

Defining additional rules is not possible easily due to the lack of modularity.
For development, the CVS repository contains a small set of black box tests
that check Jlint’s output on one simple test class.

Limitations

Users cannot easily define custom rules, because all checks are hard-wired into
Jlint and it would be necessary to directly change Jlint code.

Jlint builds a call graph to detect issues with multi-threading. This is done
iteratively and the number of iterations is fixed to limit calculation complexity.
Synchronization problems that lie beyond this limit are not detected.

Several checks performed by AntiC and Jlint do not apply to Java or are
already checked by the Java compiler.

16Type truncation is a form of data loss that occurs when values are cast to smaller types,
see http://cwe.mitre.org/data/definitions/197.html.

12
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Project

Jlint was originally developed by Konstantin Knizhnik and later extended by
Cyrille Artho. Several other authors contributed to the project.

The current version 3.1.2 is available from Sourceforge.!” There is also a Jlint
website,'® but it appears outdated (with Jlint version 3.0 and older documents
than their Sourceforge counterparts). The current documentation can be found
in the Jlint distributable and is dated to 2004.

The overall project activity is unclear. While the last CVS activity on
11.01.2011 appears to be fairly recent, it is preceded by many years of silence.
There are no signs of future directions or of active developers.

Impression

Jlint has a rather narrow scope and is not easily extendible. Therefore, it may
be of limited use for more specific requirements. While the AntiC rules are
mostly covered by IDEs and the Java Compiler, Jlint’s remaining rules are solid
and useful. The tool is not exceptionally comfortable and not very modular.
Being written in C and C++, it is not easily accessible to Java programmers for
inspection or changes.

24 PMD

PMD is free software released under a “BSD-style license”.!? It is written in
Java and performs checks on Java source code. Violations of rules are presented
as plain text or written into HTML or XML files. There is a number of plugins
for various IDEs that equip PMD with a graphical user interface.2’ The tool
promises to check code for possible bugs and to identify dead, suboptimal, or
overly complicated code as well as code repetition.

Architecture

PMD employs a JavaCC?! parser that constructs abstract syntax trees (AST)
from Java sources. The main loop of PMD then examines the AST, visiting all
rules that have registered to be interested in certain AST constructs. The rules
can then check the AST and report violations.

PMD offers a data flow analysis that can be used by the rules. The results
of the data flow analysis are given by a graph structure with information on
definition, undefinition, and redefinition of local variables.

Rules are provided as Java classes or can alternatively be given by an XPath
query.?? The documentation of PMD states that rule contributions have to be
tested for correctness and performance against a large code base like the JDK
source and need to pass the so-called “dogfood” ruleset provided with the PMD
sources.

"http://sourceforge.net/projects/jlint/

B¥nttp://artho.com/jlint/

1ghttp://pmd.sourceforge.1’1et/lj.cense.html

20nttp://pmd.sourceforge.net/integrations.html

2Inttp://javacc. java.net/

22For an example of an XPath query, see http://pmd.sourceforge.net/
xpathruletutorial.html.
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Functionality

In addition to checking code for compliance with code quality rules, PMD also
includes a duplicate code detector that helps to identify code that should be
extracted to methods in order to avoid copy-and-paste errors and to increase
maintainability.

There are several rules that feature the detection of bugs and that check code
for compliance with well-known as well as with controversial best practices,
including conventions, code style and design principles (taken, for example, from
the Java API Specification [6] or from books like “Effective Java” [3]).

The program distributable ships roughly 250 predefined rules that are listed
together with a short description on the project’s website. Reported problems
are classified on a scale from 1 (“change absolutely required”) to 5 (“change
highly optional”) in order to help users to prioritize.

The rules are organized into several categories. There are also rules spe-
cific to Android, J2EE, JSF and JSP, JUnit, Jakarta Commons Logging, and
for migration to new Java versions. The more general rule categories are the
following:

Basic. Basic rules detect code fragments that should generally be avoided.
Examples are empty blocks, overriding equals () but not hashCode () (and vice
versa), use of double checked locking, and a number of cases of unnecessary code
(that can be shortened). Other rules detect operations that have no effect at all
and are therefore likely to be a programming error.

There are also rules regarding null-checks (e.g., variable is used before it
is checked for null) that, however, only identify obvious violations where the
misplaced use of a variable is in the same line as the check for null.

Braces. Rules for braces state that blocks following if, else, for, and
while should use braces.

Clone Implementation. In Java, the correct implementation of the in-
terface Cloneable and the clone () method is defined by convention and not
enforced by the compiler. Clone implementation rules check if the conventions
to implement the Cloneable interface have been met.

Code Size. Code size rules include rules that find code of high complex-
ity. Examples are overly long classes, methods or parameter lists, many (public)
fields or methods, and code that has a high number of decision points or execu-
tion paths.

Controversial. Controversial rules are ones that are disputed within the
Java community. PMD features 19 such rules, e.g., that each method should
have only one return, that the volatile keyword and the short type should
not be used, or that variables should not be assigned null. Usually, at least
some vague reasoning behind the rules is given, although the descriptions of
rules are generally rather short.
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Coupling. Coupling is the degree to which components are interdepen-
dent. Generally, “loose” coupling is preferred. Rules for coupling check the
number of fields contained in classes, the number of imports, and the usage of
interfaces instead of concrete types (i.e., declaring variables to be of type Set
instead of HashSet etc.).

Design. Design rules in PMD comprise a mixture of many rules of the
form “do/don’t do this” or “x should/shouldn’t be y”. The types of rules range
from rules that encourage certain programming style to rules that detect plain
programming errors.

For example, one rule instructs the user to avoid synchronization at method
level. This helps synchronizing only parts of the code that actually need synchro-
nization. This way, when adding code to that method, developers can decide to
put it inside or outside the synchronized block. Other rules detect and propose
fields that can be declared static. A number of rules aims to encourage keeping
code simple. For example, when checking for null and then performing a check
with instanceo£, the code can be shortened to just the instanceof test, since
it returns false when the parameter is null.

Some rules detect code that is likely to be incorrect. For example, a class with
a private constructor and no static methods or fields is unusable, comparisons
to Double.NaN are always false, and idempotent assignments have no effects.

The description of all rules in this section is beyond the scope of this report.
However, it should be noted that the resemblance to the Basic rules is high.

Finalizer. Like with clone (), implementing finalize () bears some pit-
falls and is subject to conventions that are not enforced by the compiler. Cor-
responding rules are grouped together in the this category. If implemented, the
method finalize () should be protected, have no arguments, include a call
super.finalize (), and otherwise never be called explicitly.

Import Statement Rules. This category contains some rules for import-
ing that are generally also being followed by common IDEs. Imports should not
be duplicated, java.lang should not be imported, and unused imports should
be removed. Also, too many static imports should be avoided.

JavaBean. A JavaBean is a class that fulfils certain requirements for au-
tomatic instantiation. It has to provide a parameterless public constructor,
getters and setters for fields and be serializable. Details can be found in the
JavaBean API Specification [9]. PMD JavaBean rules check that classes are
serializable. This includes the presence of a parameterless constructor and all
required getters and setters.

Java Logging. Logging rules encourage users to use loggers instead of
directly printing messages and dumping stack traces to the standard output.
Only one logger per class should be present and be declared static and £inal.

Naming. Rules in this category describe naming convention listed in the
the Code Conventions for the Java Programming Language [8].
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Optimization. Rules in the Optimization category deal with code that
can rewritten to be more efficient. This includes making variables £inal where
it is possible, avoid object instantiation in loops, using St ringBuffers for String
construction and some specific idioms that are to be preferred to others.

Strict Exception. Some patterns where the consensus is that they are
generally to be avoided can be checked using PMD’s Strict Exception rules. The
rules state to avoid raw exception types (Exception and Throwable), extending
Error, throwing exceptions within a £inally block, using exceptions for control
flow, and catching NullPointerExceptions.

String and StringBuffer. String rules detect String usage in an unnec-
essary or wasteful manner. Most notably, repetition of String literals and in-
efficient String construction is discouraged. There are also several rules that
suggest idioms that are to be preferred to others for the sake of performance.

Security Code Guidelines. The rules in this category check code with
respect to two security guidelines from Sun. The two rules concern arrays: Meth-
ods should not return internal arrays, and arrays passed from outside should be
defensively copied before they are stored.

Unused Code. Unused code rules detect the presence of unused fields,
local variables, private methods, and formal parameters.

Usage

PMD can be used from the command line or using a plugin for an IDE. In the
latter case, reported errors are shown (with respective error messages) directly
in the source code.

The analysis can be customized by providing rulesets in XML. It is possi-
ble to include and to exclude certain rules and whole categories of rules. For
actual use, the PMD website advises to start with a small set and include ad-
ditional rules according to one’s needs. PMD also takes a parameter called
minimumpriority that makes PMD exclude all rules below a given priority.

When reviewing violations, programmers may put annotations to prevent
PMD from reporting on certain issues again. This is done by placing an annota-
tion @SuppressWarnings ("PMD") in front of blocks to be left out or @ Suppress-
Warnings ("PMD.ClassName") to ignore certain rules. PMD also obeys the
JDK @SuppressWarnings ("unused") annotation and skips lines that contain
a //NopPMD comment (a marker that can be redefined at will).

Additional rules can be created by implementing them (in Java or XPath)
and plugging them into PMD’s execution loop.

Limitations

PMD can detect and report bugs found by matching AST patterns on source
code. However, when analyzing source code, PMD provides only very limited
type information to the rules; in fact, the types of objects often are not deter-
mined by PMD. This makes it difficult to implement rules in PMD that refer
to the types of objects.
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Project

PMD is developed by InfoEther Inc. The current version 4.2.5 has been released
in February 2008. It is available from the tool’s Sourceforge page.?> PMD
is thoroughly documented in a book named “PMD Applied” [4] (“the official
manual”), which is available for purchase. A brief documentation on installation,
usage, and predefined rules is available online.

According to the web page, version 5.0 is currently being worked on and will
introduce better support for cross-file and for data flow analysis, have messy code
parts cleaned up, and include new libraries and library versions. The version
control system does indeed show regular commits, so the project appears to be
active.

Impression

Overall, PMD leaves a good impression of an active, high-quality community
project. The code quality of the rules meets the project’s goal to pass its “dog-
food” ruleset. In fact, all but one rule do pass it. The integration into several
IDEs makes it seamlessly interact with the development process.

The categorization of rules is sometimes hard to comprehend; e.g., rules
from “Basic”, “Controversial”, and “Design” categories are difficult to tell apart.
Several rules from categories other than “Controversial” could as well be regarded
as controversial. For example, the rule ReturnEmptyArrayRatherThanNull
from the “Design” category states that it is a better behavior to return an empty
array rather than null. It is hard to see how this can be regarded as a general
rule, placed in the same category as rules that detect actual programming errors.

Running the “dogfood” ruleset on the complete PMD source produces 265
problems. Checking for compliance with the complete ruleset yields 19,152
problems; which illustrates the need of smaller rulesets. 6,759 of the reported
problems alone are due to rules that require method parameters and local read-
only variables to be declared final.

That being said, PMD should be thought of as a framework for rules (to be
developed, if necessary) rather than a fixed set of rules to be used out-of-the
box. New rules can be created by implementing Java classes, so there is no need
to learn any domain specific language, although it may pose a challenge to work
on Java ASTs due to their complexity.

2.5 Choosing a Tool

None of the tools from the previous sections addresses the secure coding guide-
lines IDS03-J and IDS07-J from [10]. Thus our goal is now to choose a tool as
a basis to implement new rules for these guidelines.

For choosing a tool, we use the following criteria:

1. The architecture of the tool shall be open so that additional rules can be
added easily.

2. The tool shall be actively maintained so that there is hope that it remains
up to date (e.g., concerning changes in the Java programming language).

23nttp://pmd.sourceforge.net/
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String dir = System.getProperty ("dir");

Runtime rt = Runtime.getRuntime ();
Process proc = rt.exec(new String[] {"sh", "-c", "ls_" + dir});
Y

Listing 1: Example of non-compliance in IDS07-J (shortened) [10]

PMD satisfies these criteria. In addition, PMD’s built-in data flow analysis
is appealing, because both IDS03-J and IDS07-J address flows of (un)sanitized
data. Note that our choice of PMD does not imply that other tools are less
suited for analyses with respect to these two secure coding guidelines. Instead,
our choice is intended to provide a reasonable basis for the implementation of
analyses with respect to IDS03-J and IDS07-J.

3 Secure Coding with PMD

In this section, we document our implementation of a rule in PMD that checks
Java code with respect to the secure coding guidelines IDS03-J and IDS07-J
from [10]. Our goal is to obtain an implementation that avoids false negatives,
i.e., cases where the guidelines are violated, but no violations are reported. In
turn, we accept the possibility of false positives, i.e., cases where violations are
reported, but which actually are not violations of the guidelines. This conser-
vative approach shall ensure that all violations are reliably detected.

As outlined in Section 1, we address IDS07-J first before generalizing our
implementation to IDS03-J.

3.1 Introduction to IDS07-J

The secure coding guideline IDS07-J is intended to avoid some command in-
jection hazards from data that originates from untrusted sources and is not
validated or sanitized before it is used as an argument to critical subsystems.
The rule is part of a set of rules that are concerned with “Input Validation and
Data Sanitization” and reads as follows:

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec ()
method.

Each Java application has access to a singleton Runtime object that is
obtained via Runtime.getRuntime (). This object can be used to interface
with the execution environment. In particular, it provides a method exec ()
that executes commands on the operating system.

According to the rule, no untrusted, unsanitized data should be passed to
Runtime.exec (). That is, “[a]ny string data that originates from outside the
program’s trust boundary must be sanitized before being executed as a com-
mand on the current platform.” [10]

The example in Listing 1 shows non-compliant code that is susceptible to
command injection attacks. In this example, a value from the environment is
stored in the variable dir and then used as an argument to a shell command
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if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
// Handle error

}

VI

Listing 2: Example of compliance with IDS07-J: sanitization [10]

without prior inspection. By providing a specially formed argument, the at-
tacker may exploit this to execute arbitrary commands. For example, using the
value dummy & echo bad for dir, the command executed is

sh —-c ’"1ls dummy & echo bad’

which is actually two commands, where the contents of the (possibly non-
existent) folder dummy are listed and then bad is printed to the console. In the
same manner, any command can be appended to the 1s command.

IDS07-J suggests three possibilities for compliant solutions:

Sanitization. This possibility prevents command injection by passing only
sanitized Strings to Runtime.exec (), for example by whitelisting allowed char-
acters (excluding spaces, ampersands, etc.). The example in Listing 2 uses a
regular expression to allow input that consists of alphanumeric characters as
well as the characters @ (“at”) and . (“dot”).

Restricted User Choice. Giving the user a choice between a fixed set of
possible (trusted) arguments solves the problem of command injection. An
example of how this can be achieved is shown in Listing 3. The code still obtains
a value from the environment, but ensures by a call to Integer.parseInt ()
that it is an integer. Subsequently, the value is used to select between one of
two possible values for dir: "datal"™ and "data2", which are given as literals
in the program.

Avoid Runtime.exec (). When the task performed by a system command can
be accomplished by some other means, it is almost always advisable to do so.
Hence, a compliant solution for the examples given above would be to use Java’s
File.list () on directories instead of calling 1s through Runtime.exec () as
in the example in Listing 4.

3.2 Elaboration on IDS07-J

Before implementing a PMD rule for IDS07-J we introduce some terminology
and explain how we intend to apply static analysis to detect violations of the
guideline.

Terminology. IDS07-J refers to “untrusted” and to “unsanitized” input or
data. “Untrusted data”, in the sense of IDS07-J, can be understood as strings
“originating from outside the program’s trust boundary”, while “unsanitized
data” refers to data that has not been sanitized. More specifically, we distinguish
between sanitized and unsanitized strings in the context of IDS07-J, because
Runtime.exec () takes only strings as parameters.
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1 /77 ...

2 String dir = null;

3

4 // only allow integer choices
5 int number = Integer.parselnt (System.getProperty ("dir"));
6 switch (number) {

7 case 1:

8 dir = "datal";

9 break; // Option 1

10 case 2:

11 dir = "data2";

12 break; // Option 2

13 default: // invalid
14 break;

15 1}

16 if (dir == null) {

17 // handle error

18 1}

Listing 3: Example of compliance with IDS07-J: restricted user choice [10]

File dir = new File(System.getProperty ("dir"));
if (!dir.isDirectory()) {
System.out.println("Not_a, directory");
} else {
for (String file : dir.list()) {
System.out.println(file);
}
}

Listing 4: Example of compliance with IDS07-J: avoidance (shortened) [10]

0~ O Ui W N
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Static analysis. We aim for an analysis on the method level. We consider
literals within the method as sanitized, because literals constitute constants de-
fined by the programmer and should therefore never be malformed or malicious.
All strings originating from outside the method are treated as unsanitized unless
we have information that such a string is sanitized. More precisely, we determine
the sanitization state of expressions of type string as follows:

1. Literals are sanitized.

2. Return values of methods are unsanitized unless the method is annotated
to return sanitized values; see Subsection 3.3 for details.

3. Formal parameters of the method are unsanitized.
4. Fields of objects and classes are unsanitized.

5. The sanitization states of local variables are determined by a separate
analysis that is described in Subsection 3.3.

6. An expression el + e2 is sanitized iff el and e2 are sanitized.

Strictly speaking, a string concatenation el + e2 should be treated as unsani-
tized, exactly as if the string concatenation was computed by calling concat ();
after all, the concatenation of two sanitized strings could form a malicious string.
However, we deviate from this very conservative point of view in order to prevent
the rule from producing too many false positives.

For each occurrence of a call of Runtime . exec (), the analysis needs to deter-
mine whether its arguments are sanitized or not. Building upon the sanitization
state of expressions as defined above, IDS07-J can be restated to say that no
unsanitized expressions should be passed to the Runtime.exec () method.

Note that our approach correctly handles the compliant possibilities of re-
stricted user choice and avoidance of Runtime.exec () calls. In addition, we
also account for possibilities to sanitize unsanitized strings (via special annota-
tions, to be introduced in the following subsection) in order to cover all three
possibilities of compliance suggested by IDS07-J.

3.3 Implementation of a Rule for IDS07-J

According to the discussion in the previous subsection, our implementation has
three basic elements:

e For the programmer, a means to annotate the program to signal the san-
itization of unsanitized strings.

e For the program analysis, a data sanitization analysis that determines the
sanitization state of local variables.

e For the program analysis, the actual rule implementation that finds calls
to Runtime.exec () in the program and uses the results of the data sani-
tization analysis to detect and to report rule violations.
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@Sanitization
private String sanitize (String input) throws IOException {
if (!Pattern.matches("[0-9A-Za-z@Q@.]+", input)) {
// Handle error
throw new IOException();

}

return input;

}
Listing 5: Implementing sanitization

dir = sanitize(dir);

VA

Listing 6: Using sanitization

Annotations for Sanitization

IDS07-J suggests the sanitization of data from untrusted sources. The code
example in Listing 2 shows one possibility by matching the input against a
pattern that whitelists permitted characters in dir. As a result, if dir is
unsanitized before the pattern match, it is intended to be sanitized once the
program proceeds past the i f-block.

Our implementation accounts for this possibility by introducing an anno-
tation called @Sanitization that can be utilized to annotate sanitization
methods. For such methods, the analysis considers the return value as sani-
tized.

Putting this into practice means placing input validation (such as the code
from the example) into a method annotated by @Sanitization. The result
may look as displayed in Listing 5 (filling in the parts that are left out in the
example in Listing 2). Note that the lines 3-6 in Listing 2 correspond to lines
1-3 from Listing 2. Line 5 ensures that control reaches the return statement
only if the data is valid. The annotation in line 1 signals that the return value
of the method is sanitized.

In order to sanitize the value in dir before a call of Runtime.exec (), the
value can now be sanitized by passing it to the sanitization method and by
overwriting it with the return value of the sanitization method, see Listing 6.

Actually, the form of sanitization proposed in the compliance example from
IDS07-J is rather an input validation. This manifests itself in the fact that the
method sanitize () in Listing 5 returns either exactly the input value (if it is
valid) or nothing at all. Sanitization methods as presented here are capable of
such detection of malformed input as well as of actual data sanitization (when
input and return value to the method are not necessarily equal). An example
for this is given in Subsection 3.5.

Data Sanitization Analysis

A central element of the rule implementation is the determination of the sani-
tization state of expressions as described in Section 3.2. The sanitization state
of expressions generally depends on the sanitization states of the variables that
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String dir = null;

if (Boolean.valueOf (System.getProperty ("selectDir"))) {
dir = System.getProperty("dir");
} else {
dir = "default";
}
Runtime rt = Runtime.getRuntime () ;
Process proc = rt.exec(new String[] {"sh", "-c", "ls_" + dir});
V2R

Listing 7: Code example for Data Sanitization Analysis

occur. We compute the sanitization states of variables by a dedicated Data
Sanitization Analysis.

The Data Sanitization Analysis is similar to the Available Expressions Anal-
ysis in [11]. The purpose of the Available Expressions Analysis is to determine
“[flor each program point, which expressions must have already been computed,
and not later modified, on all paths to the program point.” For the Data Saniti-
zation Analysis, we are instead interested in variables that have been assigned
sanitized values, and not later modified, on all paths to the program point.

PMD provides a control graph representation of the program, where every
statement is represented as a node and edges connect nodes when control might
pass from one statement to another. As an example, consider Listing 7 and its
graph representation in Figure 1.

Adopting the notation from [11], we identify every node by a unique label
that we give as a superscript to the statement it represents. For every such label
¢ € Lab, (where Lab, is the set of all labels in the program), we calculate sets
DSeniry(£) C Var, and DS.,;:(¢) C Var, (where Var, is the set of all local
variables). These sets comprise those variables that definitely contain sanitized
values before or after the execution of the statement identified by ¢, respectively.

The sets DSeniry(¢) and DSeqi(€) are computed using a forward analysis
(i.e., following the edges of the control flow graph) as follows:

e The sets are initialized with DSeypiry(¢) = DSeqit(£) = Var, for all labels
¢ € Lab,.

e When updating the sets DSecniry(€) and DSeqi(€) for some ¢ € Lab,,
DSeniry(€) is set to the intersection of the exit sets of all its predecessor
nodes.

For example, consider £ = 5. As can be seen in Figure 1, control might
pass from nodes identified by 3 and 4. If DS,.;+(3) = 0 (because dir has
been assigned an unsanitized value) and DS,;;+(4) = {dir} (because dir
has been assigned a literal, i.e., a sanitized value), the data sanitization
analysis computes DSeptry(5) = DSepit(3) N DSerit(4) = 0.

o After determining the value for DSepiry(£), DSeyit(€) is computed based
on DSepniry(€) as follows: If the statement denoted by £ is an assignment to
some variable v, then v is added to DS, (¢) if the expression on the right-
hand side of the assignment is sanitized; if the expression on the right-hand
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|[String dir = null;}1|

| Boolean.valueOf ( 2|

ii}g///// \\\\\i\ife
[dir = System.property("dir");] | dir = "default";] |
|[Runtlme rt = Runtime.getRuntime ( );]5|
|[Process proc = rt.exec(...);}6|

Figure 1: Control flow graph for the code in Listing 7

side of the assignment is unsanitized, then v is removed from DSy (). If
the statement denoted by ¢ is not an assignment, then DS, (¢) is equal
to DSentry (ﬁ)

For example, consider £ = 2 in the program represented by Figure 1.
DSeniry(2) = {dir}. Because there is no assignment in the statement,
DSegit(2) = DSentry(2) = {dir}, i. e, dir is still sanitized. On the other
hand, DSezit(3) = DSentry(3) \ {dir} = 0, because dir appears on the
left hand side of an assignment and is assigned an unsanitized value. For
¢ =4, dir is not removed from the set, because it is assigned a sanitized
value.

Note that the data sanitization considers only local variables. Other identi-
fiers (e.g., identifiers of fields or of parameters) are never present in the sets
DSentry(€) and DSeqi(€) and thus are always treated as unsanitized.

A Rule for PMD

PMD parses the Java program and creates an abstract syntax tree (AST). Rules
in PMD are Visitors [7] that implement a visit () method. The type of its first
parameter identifies elements from the AST that it visits. It means that during
a PMD run, all AST elements of a certain type are passed to the rule’s visit ()
method. AST elements are themselves ASTs (sub-trees of the original tree) and
rules can traverse them to discover violations and post them to PMD using a
dedicated context object (also passed to the visit () method). At the end of a
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run, PMD reports all violations that have been posted by the rules to the user.

Our implementation works on method level, i.e., the rule visits all AST el-
ements that represent method declarations. In the visit () method, a Data
Sanitization Analysis is performed, all calls of Runtime.exec () are found, and
a violation of IDS07-J is reported iff the argument of Runtime.exec () is un-
sanitized.

3.4 Generalization to IDS03-J

So far, we have focused on implementing a rule for IDS07-J. Now we generalize
our implementation to IDS03-J.

In fact, our implementation is capable of addressing a broader range of cases
where strings from untrusted sources are passed to critical subsystems, by gen-
eralizing from Runtime.exec () to user-defined sinks.

We introduce a configuration file in which the methods that are to be consid-
ered as critical subsystems are listed. For example, for IDS07-J a configuration
file can be used that contains a single entry:

java.lang.Runtimefexec

For other secure coding guidelines, this file can be changed to contain other
or more methods that should not receive unsanitized data. For IDS03-J, such a
critical method is Logger.severe ().

Unfortunately, PMD’s capability to infer types from Java sources files is lim-
ited, because static type inference for objects is generally a difficult task. There-
fore, calls of Logger.severe () might be missed if for some call o.severe (),
PMD cannot infer that object o is of type Logger. However, if methods have
distinctive names (as is common practice in Java), one can more generally look
for all calls of a method severe (), regardless of the inferred type of the object.
We therefore allow users to define sinks by method name only. For example,
using a configuration file with the entries

#warning
#info
#severe

is useful to catch calls to a logger, because those are common names for logging
methods and are unlikely to appear anywhere else. Even if they do appear in
some other class, then our analysis is conservative in identifying more potentially
critical method calls.

3.5 Example of a Data Sanitization

A case where sanitization is broadly practised is the handling of HTML tags in
forums and other internet services where textual user input is accepted, saved,
and displayed [2]. Users that (on purpose or by accident) enter HTML tags into
their texts could affect the markup structure of the website that the texts are
embedded into.

Let us consider a simple example where a user comment is displayed within
a <div> element (see Listing 8). The user can input text that contains HTML
tags to create an HTML structure that was not intended. For example, inserting
the input
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<div class="userComment">

<!-- user input goes here —-->
</div>
Listing 8: Input sanitization: HTML template for user comments
<div class="userComment">
<script type="text/Jjavascript">alert ("Bad!");</script>

</div>

Listing 9: Input sanitization: HTML with unsanitized user input

<script type="text/javascript">alert ("Bad!");</script>

into Listing 8 yields Listing 9. Nothing will be displayed in the comment
block. Instead, the text enclosed in the <script> tags ends up being executed
as JavaScript. In a similar manner, it is also possible to change the document
in unintended ways.

This problem can be avoided by proper input sanitization, meaning that
HTML tags are removed altogether or by replacing all HTML special characters
by their escape sequences.

The implementation of a possible sanitization method is given in Listing 10.
It is a minimal example that replaces all occurrences of angle brackets by their
HTML escape sequences. This simple treatment of user input is insufficient for
real applications, but enough to prevent the insertion of JavaScript code that
was possible without sanitizing the input.

Note that Listing 10 significantly differs from Listing 5: While the method in
Listing 5 either returns the exact input or nothing at all (validation), the method
in Listing 10 can produce result values different from the input (sanitization)
and will always return unless the input is null. For our example input that
contains HTML tags, the return value is:

&lt;script type="text/javascript"&gt;
alert ("Bad!");
&1t; /scripté&gt;

Including the sanitized input into a comment block does no longer execute the
code. Instead, it is displayed as text.

In our implementation of the rule, we do not distinguish between validation
and sanitization; due to the @Sanitization annotation, our implementation
is able to recognize the method in Listing 10 as a sanitization method similarly
to the method in Listing 5.

3.6 Case Study

To test our implementation, we applied it to the source code of Kunagi.?* Ku-
nagi is a free and open-source project management tool. We used version 0.23.2
from August 15, 2012. The program consists of about 30,000 lines of code.

24http://www.kunagi.org/
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@Sanitization

private String sanitize (String input) {
String result = input.replaceAll ("<", "&lt;");
String result = input.replaceAll (">", "&gt;");
return result;

Listing 10: Input sanitization: escaping special HTML characters

True False

Positive 97 16
Negative 18 20

Outcome

Table 1: Evaluation results

In practice, there are hardly any calls of Runtime.exec () in Java code. For
Kunagi, the analysis with respect to IDS07-J succeeded trivially, because there
are no calls of Runtime.exec () in the code. Therefore, we subsequently focus
on the results when checking Kunagi with respect to IDS03-J. Specifically, we
detected potentially unsanitized input to the logger methods warn (), info (),
error (), and fatal ().

Our implementation finds 115 critical sinks, 84 of which are reported to
violate it. In total, 113 violations are reported (because there are calls with more
than one unsanitized argument). From a quick glance, roughly 43 violations
are true positives with a high confidence that sanitization should be performed
(because the parameters contain user input of some kind). Another 35 violations
report objects that originate from within the system. In practice they may or
may not contain unsanitized data. 19 cases report the logging of exceptions that
can, but are unlikely to contain unsanitized data. In sum, 97 of 113 reported
violations constitute true positives of a different degree of confidence.

Of the remaining reported violations, 7 actually are no violations of IDS03-J.
The remaining 9 reported violations are duplicates (the implementation needs
to be adjusted to not report such cases). In sum, 16 of 113 reported violations
are false positives.

There are 18 cases of true negatives (i.e., sinks that are correctly not re-
ported at all) and 20 cases of false negatives. The false negatives reveal that
our implementation misses some violations of the guideline: Apparently, PMD
treats constructors specially and, in particular, separately from methods. Fur-
thermore, references to this seem to be treated specially and, in particular, are
not considered as references to variables. In one case, we observed that a block
for exception handling was ignored; without further insights into the details of
PMD’s analysis, we could not find out why this happened and how this could
be avoided.

The results are summarized in Table 1. From the high number of true pos-
itives, we conclude that our implementation in PMD can be used to effectively
identify violations of the secure coding guideline IDS03-J. In order to be able
to verify compliance with IDS03-J, some further insights into PMD’s internal
workings is needed so that false negatives are avoided.
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public final class SanitizedArguments {
public void listDir () {
list ("sanitized");

}

private void list (String dir) {

Runtime rt = Runtime.getRuntime () ;
Process proc = rt.exec(new String[] {"sh", "-c", "ls_" + dir});
/).

Listing 11: Sanitized method arguments

3.7 Future Work

Critical Sinks. Critical sinks are currently given as pairs of a class and a
method or just as method names. It might be useful to extend this to point
out the exact parameters that are of interest. Also, it is currently not possible
to derive the type a method is called on in most cases. This is due to PMD’s
limited capability to infer types from the Java sources (because type information
is sparse).

Constants. The implementation assumes that all return values of method
calls and all fields contain unsanitized data. This is too strict, because methods
that always return literals or final fields that are assigned literals on initialization
are not unsanitized in the sense of the guideline. It is generally possible to
statically determine the presence of such cases, which could be done to reduce
the number of false positives.

String Operations. As stated in Subsection 3.2, we treat string concatena-
tion to produce sanitized results if sanitized Strings are concatenated. We do
this to prevent the proliferation of false positives, because string concatenation
is very common and would return sanitized variables to an unsanitized state
very often. The best example is the concatenation of two literals. There are
several other cases where we could have relaxed the rule further, for example
when calling String.concat () or using StringBuffer and StringBuilder.

Summarizing, it can be said that a more detailed analysis is needed to prop-
erly differentiate between actual rule violation and safe string operations.

Literal Arguments. If methods are known to be called only with sanitized
data, the arguments are not necessarily unsanitized. Consider Listing 11 as a
small example. The final keyword in front of the class prevents the class from
being subclassed. The private method 1ist () is called only from the public
method 1istDir () with a string literal. Hence, dir is always sanitized within
list (), but will be treated as unsanitized in our implementation, because it
is a method argument. Detecting such cases would further reduce the presence
of false positives.
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if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
throw new IOException();

}

Runtime rt = Runtime.getRuntime ();
Process proc = rt.exec(new String[] {"sh", "-c", "ls_" + dir});
/S

Listing 12: Implicit sanitization

Implicit Sanitization. Implicit data sanitization is not recognized; e.g., a
call to Runtime.exec () in some program branch that is only reached when
input data is valid, but not through means discussed in Subsections 3.2 and 3.3.
Consider, for example, the code from Listing 12 as an instance of the compliant
example in Listing 2 from Subsection 3.3.

Here, control flow only reaches line 5 if the value of dir is sanitized, because
it passes the validation criteria in lines 1-3 or an exception is thrown. Such cases
will be reported as false positives by the Data Sanitization Analysis and need
to be made explicit by moving them to sanitization methods annotated with
@Sanitization like shown in Listings 5 and 6.

It is possible to implement some means of implicit sanitization, for example
following approaches like in Perl’s Taint Mode?® [14].

Java Complexity. PMD provides Java abstract syntax trees and the rule tra-
verses those trees to find assignments, methods calls and other relevant struc-
tures. As Java is a very complex language, it is difficult to make sure that
all cases are covered. To ensure this, more work and more testing would be
required.

The tests were limited to 9 test cases showing typical situations in which
programs might (legally or illegally) call Runtime.exec (). They cover all cases
shown in the IDS07-J specification and some others, but are by no means an
exhaustive coverage of all possible forms of a Java programs.

Reflections. Reflections are not taken into account. They could be used to
obfuscate method calls under inspection that the rule would not recognize as
such.

4 Conclusion

In this report, we investigated how a tool for the static analysis of Java code
can be tailored to check programs with respect to secure coding guidelines.
Regarding the tool, we chose PMD as a basis to implement a so-called rule that
checks Java programs with respect to the two secure coding rules IDS03-J and
IDS07-J. We chose PMD because it provides an open architecture that allows one
to implement and to add additional rules for the analysis. Furthermore, PMD
is actively maintained and provides basic functionality that would otherwise
be tedious and error-prone to implement: It parses the program and passes

25http://perldoc.perl.org/perlsec.html#Laundering-and-Detecting-
Tainted-Data
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abstract syntax trees of the methods of the program to the rules for analysis.
Also, PMD’s built-in data flow analysis proved helpful to implement our Data
Sanitization Analysis for IDS03-J and IDSO07-J.

Within a case study, we applied PMD to a Java program with about 30,000
lines of code so that the Java program was checked with respect to the rule we
implemented. The analysis identified a large number of violations of IDS03-J.
Unfortunately, some violations of IDS03-J were missed by our implementation in
PMD. We believe that these false negatives can be eliminated by delving more
into the internal workings of PMD and its representation of abstract syntax
trees. Overall, our results are promising and indicate that the implementation
of rules to check programs with respect to secure coding guidelines may help to
achieve compliance with secure coding standards.

As future work, it would be interesting to investigate how other tools for
the static analysis of Java code can be tailored to check programs with respect
to secure coding guidelines. Depending on the infrastructure that is offered by
other tools, this might significantly influence the precision of the analysis.
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