
Poster: Software Security for Mobile Devices

Steven Arzt¶, Alexandre Bartel¶, Richard Gay†, Steffen Lortz†, Enrico Lovat‡, Heiko Mantel†,
Martin Mohr∗∗, Benedikt Nordhoff§, Matthias Perner†, Siegfried Rasthofer¶, David Schneider†,

Gregor Snelting∗∗, Artem Starostin†, Alexandra Weber†
¶TU Darmstadt, Email: 〈firstname.lastname〉@ec-spride.de

†TU Darmstadt, Email: 〈lastname〉@mais.informatik.tu-darmstadt.de
‡TU Munich, Email: enrico.lovat@in.tum.de
§WWU Münster, Email: b.n@wwu.de

∗∗Karlsruhe Institute of Technology, Email: 〈firstname.lastname〉@kit.edu

I. MOTIVATION

Android is the most commonly used mobile operating
system, with a market share of 76% at the end of 2014.1
At the same time, security violations by Android applications
are often reported. These commonly take the form of the
application revealing the user’s sensitive information (as in the
example of a flashlight app that reveals the user’s device ID
and location2) or behaving in a way that is unexpected and
harmful to the user (e.g., by sending costly SMS without his
knowledge3).

The Android ecosystem offers a number of security mech-
anisms, such as the sandboxing of applications and a permis-
sion system restricting access to critical resources. Moreover,
applications available on Google Play are scanned to detect
malicious behavior. However, as the prevalence of security
problems on Android devices indicates, these mechanisms are
not sufficient for enabling security-aware end users of Android
devices to reliably enforce their personal security requirements.

II. A CERTIFYING APP STORE

To address this problem, we are developing the RS3

Certifying App Store. It integrates techniques from different
research areas into a one-stop security solution for end users
of Android devices. Specifically, we employ static information
flow analysis to ensure confidentiality of sensitive user data be-
fore installation and runtime enforcement to prohibit unwanted
functionality of applications. Users can choose from a set of
predefined policies or specify their own security requirements.
Both the enforced security policies and the results of analyzing
applications are presented to the user in an intuitive fashion.
In this manner, the security guarantees obtained by applying
the security techniques integrated in the app store are made
explicit to the user.

The main novelty of our approach is that we focus on
the end user and make state-of-the-art security technology
available to him. A second contribution is the integration of
technologies tackling orthogonal aspects of security into a
single tool.

1http://www.idc.com/prodserv/smartphone-os-market-share.jsp
2http://www.digitaltrends.com/mobile/brightest-flashlight-ftc-punishment/
3https://blog.malwarebytes.org/mobile-2/2013/09/uncovering-an-android-
botnet-involved-in-sms-fraud/

Fig. 1. Architecture of the RS3 Certifying App Store

A. Architecture
The RS3 Certifying App Store has a client-server architec-

ture, which is depicted in Figure 1. Similar to the servers of
existing app stores, the server of the RS3 Certifying App Store
stores and distributes Android apps uploaded as Android appli-
cation package (apk) files. In addition, our server hosts tools
for the static information flow analysis and the instrumentation
of Android apps with mechanisms for runtime enforcement,
and offers their functionality as a service to its clients.

The client of the RS3 Certifying App Store is an app run-
ning on Android mobile devices. It provides an app browser for
selecting apps to install, a policy editor for specifying security
policies for the selected apps, and mechanisms for ensuring
that installed apps satisfy the specified security policies.

To ensure the security of an app, the client requests
the static analysis or the instrumentation of an app w.r.t. a
security policy from the server. The client then receives the
app together with the analysis result or with mechanisms for
runtime enforcement instrumented into the app’s bytecode.
Finally, the client verifies the analysis results and controls the
runtime enforcement of policies in instrumented apps.

B. Prototype
We have developed prototypes of both the client and the

server of the RS3 Certifying App Store.
Installing the client app requires no changes to the oper-

ating system. Users can define their information flow policies
by using a policy editor allowing them to select categories
of sensitive information that they do not want to be revealed,
e.g., “Contact Data” or “Location Data”. The client graphically
displays the possible flows of sensitive information in an app
(cf. Figure 2). For specifying policies on the behavior of
applications, the client offers a policy editor that allows users



Fig. 2. Screenshot of the visualization of information flows in an app

to instantiate parametric policy templates to their particular
security requirements. Together, the policy editors and the
visualization of results make the security guarantees provided
by the app store easily understandable to the user.

The server-side part of our app store can be set up on any
conventional web server, since it is implemented using only
commonly available technology (i.e., PHP, Java, and MySQL).
The results of statically analyzing apps are cached in order to
increase responsiveness to the end user. The instrumentation
of apps is not yet performed on the server. Rather, apps are
instrumented before being uploaded.

III. SECURITY MODULES

The RS3 Certifying App Store currently integrates two
security modules. One provides static analyses for checking
whether apps adhere to information flow policies, the other
provides a runtime enforcement mechanism for preventing
unwanted behavior of apps.

A. Static Analysis
The RS3 Certifying App Store employs the RSCP Analyzer

[1], a type-based static analysis, to certify that apps comply
with the security policies defined by users before installation.
More specifically, the analysis certifies that the app does
not leak information declared as confidential by the user to
untrusted output channels, e.g., to the Internet. The certificate
of the security of an app with respect to an information flow
policy is computed by a security type inference.

Because the certification of apps can be resource-intensive
and mobile devices are typically limited in computational
power, the analysis employs the principle of proof-carrying
code. This means that security certificates are computed on
the server of the app store. The resulting certificates are then
verified on the user’s device by type-checking the app against
the certificate using the rules of the security type system.
This is much less complex than computing the certificate and,
hence, allows most of the workload of the analysis to be shifted
from the mobile device to the more powerful server. Due to
the verification of certificates on the mobile device, the user
does not have to trust the server. The security type system has
been proven sound with respect to a security property based
on a formal semantics of Dalvik bytecode. Hence, users can
have a high degree of confidence in the result of the analysis.

We are currently also integrating Joana, another static
information flow analysis tool, which was recently adapted
for the analysis of Android applications [2]. Joana is based on
program dependency graphs (PDGs) and utilizes sophisticated
program analyses (e.g., alias analysis) as the basis for a flow-,

context-, field-, and object-sensitive information flow analysis
that aims to be highly precise.

By integrating two static analysis tools with complemen-
tary advantages, we enable users to choose the tool best
suited to their requirements. The integration also enables us
to compare the two approaches.

B. Dynamic Enforcement
The RS3 Certifying App Store furthermore integrates

DroidForce [3] to enforce user-defined policies on the behavior
of apps. Such policies may depend on information available
only at runtime, e.g., when limiting the number of SMS
that may be sent per hour or when disabling Internet access
at night. To enforce such policies, DroidForce instruments
the bytecode of applications by injecting policy enforcement
points (PEPs) for monitoring and controlling the occurence of
security-critical events.

At runtime, the PEPs observe the occurence of such events
and query the policy decision point (PDP), which is part of the
client of our store, for whether the event shall be allowed to
occur. The PDP decides this based on whether the execution
of an event would violate the policy defined by the user. The
decision of the PDP is then enforced by the PEPs. Because
the PEPs in all instrumented applications communicate with
the same instance of the PDP, system-wide security policies
can be enforced.

IV. CONCLUSION AND FUTURE WORK

With the RS3 Certifying App Store, we contribute the first
tool that allows end users of Android mobile devices to specify
and reliably enforce their personal security requirements and
to obtain explicit security guarantees. This is achieved by
applying state-of-the-art security technologies from different
areas of research to address two different kinds of security
problems that are prevalent in Android applications.

Currently, only one of the security modules can be applied
to each app in the store due to technical limitations. In the
future, we also want to support the combined application of the
tools to enforce different aspects of security for the same app.
Furthermore, the scope of the RS3 Certifying App Store could
be extended to further security problem domains by integrating
additional complementary tools.

ACKNOWLEDGMENT

This work was funded by the DFG under the projects
COOR (MA 3326/3-1/2/3), IFC4MC (MU 1508/2, Sn 11/12-
1), INTERFLOW (BO 2528/5-1), RSCP (MA 3326/4-1/2/3),
and SADAN (PR 1266/1-3) in the priority program RS3 (Re-
liably Secure Software Systems, SPP 1496).

REFERENCES
[1] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber,

“Cassandra: Towards a Certifying App Store for Android,” in Pro-
ceedings of the 4th ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2014.

[2] M. Mohr, J. Graf, and M. Hecker, “JoDroid: Adding Android Support
to a Static Information Flow Control Tool,” in Proceedings of the 8th
Working Conference on Programming Languages, 2015, to appear.

[3] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “DroidForce: Enforcing
Complex, Data-Centric, System-Wide Policies in Android,” in Proceed-
ings of the 9th International Conference on Availability, Reliability and
Security, 2014.


