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1 Requirements for A Data and Information Flow Specification Language

1.1 Introduction

One of the major themes of the CRISP project is to realize the “security-at-large” paradigm in the en-
gineering of complex, component-based software systems. To this end, one needs to articulate the
security requirements at not only the intra-component level but also the inter-component level, in soft-
ware systems. We are particularly concerned with security requirements in terms of data and information
flow.

A specification language is needed for the designer of IT systems to articulate such requirements. We
envision that the specification language has two main uses:

1. specifying information flow requirements – from which domains to which domains information flow
is allowed

2. specifying the assumptions or output of an information flow analysis – from which entity to which
entity information may actually flow

For either kind of potential usage, the specification language also needs to be able to deal with sys-
tem resources, since the security analysis is expected to cross the boundary between applications and
libraries.

In the context of CRISP, we envision a resource-aware requirement specification spec for the flow of
data and information in the overall system including a user application and the libraries used by it.
There are two potential approaches to the verification that the overall system satisfies spec. In the first
approach, one can verify that the application satisfies a requirement specification spec′ via information
flow analysis such as using an elaborate variant of security type system. In this case, spec′ needs to
be consistent with the assumptions about what flows can occur in the environment, as captured in the
asumption/output language. One can then check whether spec is consistent with spec′ given the data and
information flows derived about the libraries and represented again in the assumption/output language.
In the second approach, one derives the potential data and information flows in both the application and
the libraries, represented in the output language. One then combines the flows derived for the two parts
into overall data and information flows throughout the system. Such overall flows can then be checked
against spec.

The requirements on the specification language itself needs to be clarified for the appropriate design
and development of the language. To this end, we carry out an extensive literature survey on existing
specification languages for similar purposes, and present the results of this survey in Section 1.2. We
then analyze the desirability of the existing features in the context of CRISP in Section 1.3. On this basis,
we articulate the requirements on our specification language to be developed in Section 1.4.

1.2 Specification Languages for Information Flow Requirements

Decentralized Information Flow Policies
In decentralized information flow policies, information is owned by mutually distrustful security prin-

cipals. The flow of information is regulated by policies that combine the policies of all the owners. For
confidentiality, the policy of each owner further clarifies all the allowed readers that can have direct,
indirect, or implicit access of the information protected by the policy. Information can flow from A to B if
the policy of B has more owners, each allowing less readers than the policy of A does. Such a constraint
can be circumvented by explicitly using declassification operations that relax the security requirement.
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This model for specifying and checking information flow policies is called the Decentralized Label Model
and is implemented for the Java language, resulting in the Jif (Java Information Flow) language and
compiler [43]. In Jif, the policies are typically embedded into program code by using security labels for
variables, fields, parameters and classes. The Jif language has been extended for the implementation of
secure voting systems [19], Email systems [31], and distributed systems in general [39].

The correctness of the Jif compiler rests in informal arguments on what kind of information flows
exist in a program, by applying the kind of intuition in the work of Denning and Denning [23] to the rich
language features of Java. There exist a few theoretical developments building on the core Decentralized
Label Model. These developments are carried out for small languages for research purposes, and usually
include proofs of noninterference properties [63, 18, 57].

A different model and platform for Decentralized Information Flow Control is Aeolus [17], primarily
implemented for Java in runtime libraries. In Aeolus, information flow labels are sets of tags. Each tag
represents a particular kind of information. The labels are used for coarse-grained protection, e.g., of
threads and of files. Threads and methods execute on behalf of security principals. As in the Decentral-
ized Label Model, the principals can form a principal hierarchy via an “acts-for” relationship. However,
the delegation between principals can be done in a finer-grained manner, by granting authority only for
particular tags. The revocation of authority is supported. A method can be called with an “authority
closure”, allowing the local exercise of authority to remove local contamination of information.

Yet another label model for Decentralized Information Flow control is Disjunction Category Labels (DC
labels [54]). DC labels are conjunctions and disjunctions of security principals. As is the case for the
Decentralized Label Model and Aeolus, the labels form a security lattice, that is modulated by delegation
between principals. We refrain from elaborating further on the details.

Flow Policies for Operating Systems
For operating systems, entities subject to protection are threads, processes, users, files, network de-

vices, registers, etc. [61, 58, 34]. The protection comes at a lower level, and is most of the time targeting
coarser-grained objects (with exceptions such as registers), compared with information flow control in
user applications.

HiStar [61] is an operating system that keeps track of information flow. It uses category-based in-
formation flow labels attached to the aforementioned objects. Each label is a set of secrecy categories
and integrity categories. Each category can be roughly understood as the trust of a principal in the
secrecy/integrity of the protected object. Information can flow from one label to another if the former
contains less secrecy categories, and more integrity categories than the latter does – the opposite to how
principals are compared in the “relabelling” relation of the Decentralized Label Model.

Flume [34] is a “user-level reference monitor” that keeps track of information flow between Linux
processes and files. The information flow labels are also category-based – in fact HiStar borrows from
Flume in terms of the label model used [61].

Asbestos [58] is an information-flow-aware operating system that inspired HiStar. It adopted a more
complex label model than that of Flume and HiStar. Objects are referenced using handles that corre-
spond in some sense to the categories of Flume and HiStar labels. A label is a function from handles to
priviledge levels [?, 0, 1, 2, 3] (where ? is the most priviledged level and 3 the least). The Asbestos poli-
cies regulate message-passing style operations (such as inter-process communication), while the HiStar
policies regulate shared memory accesses (such as the transfer of control into a different address space).

None of the aforementioned work delivers protection in the style of a noninterference property.

Micro-policies
Micro-policies [2] apply at the level of machine instructions. Information flow labels from an arbitrary

lattice are attached to operands of the instructions and the program counter. The policy is specified as
inference rules for a dynamic information flow monitor for an abstract machine, and refined down to a
transfer function and a monitoring service for a concrete machine. In [3], the approach is extended to
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address not only information flow problems, but also trace-based properties such as compartmentaliza-
tion, control flow integrity, etc. at the machine-level. At the current stage, extensive formalization and
refinement proofs exist for the approach for conceptual machines.

Flow Policies for Distributed Systems
Two notable systems that enforce information flow policies for distributed systems are DStar [62] and

Fabric [39]. Both systems build on previous ones that used a similar model of information flow labels to
achieve information flow control for monolithic machines. In the case of DStar, labels from HiStar [61]
are adopted. In the case of Fabric, the Decentralized Label Model [18] is the basis. Both DStar and Fabric
come with non-trivial implementations. Neither comes with noninterference guarantees.

Jeeves
Jeeves [60] is a functional language that helps protect user privacy by guaranteeing noninterference

for the confidentiality of data. A programmer can use sensitive values, policies, and context values to
specify conditional information flow requirements. A sensitive value is of the form 〈v⊥|v>〉`, where v⊥
is the data value to be exposed in the public view of the sensitive value, while v> is the data value to
be exposed in the confidential view of the sensitive value. Which view is needed depends on the “level
variable” `, that can be conditioned on the context values. The enforcement method is close to multi-
faceted execution [8]. Jeeves is implemented by translation to a policy-enforcing constraint lambda
calculus, which is in turn embedded in Scala.

Information Flow Specification using Logical Formulas
The approach proposed by Andrews and Reitman early in the 80s in [7] allows the programmer to use

Hoare-logic-like preconditions and postconditions that can contain comparisons of the security domains
of variables. An example is {x ≤ y}S {Q}, saying that the security domain of the variable x is dominated
by the security domain of the variable y before the program statement S. In [7], an axiomatic semantics
is developed to construct “flow proofs” for programs written in a simple theoretical language. The “flow
proofs” need to be constructed according to the Hoare-like rules of the axiomatic semantics, with no
proven noninterference guarantees.

Darvas, Hähnle, and Sands [21] propose the use of Dynamic Logic [30] for the specification of in-
formation flow requirements. In Dynamic Logic, the formula 〈p〉φ expresses that φ holds in any state
in which the program p terminates. Consider the example policy ∀l.∃r.∀h.〈p〉r .

= l used in [21]. It
says that irrespective of the potential values of the confidential variable h that the program p is started
with, p terminates with the value of the variable r equal to that of the initial value of the low variable
l. This indirectly says that the initial values of h do not interfere with the final values of r, or there is
no information flow from h to r. The approach is showcased by proving security and insecurity of JAVA
CARD programs using the KeY tool [1].

Amtoft et al. [6, 4] propose relational assertions that can be used in the preconditions and postcon-
ditions of a Hoare-like logic. For instance, the assertion b ⇒ xn states that if the condition b holds,
then the value of x should be the same in a pair of executions differing in confidential data – thus x is
guaranteed not to contain confidential information at the program point where the assertion is used. The
proof system for the Hoare-like logic is sound with respect to termination-insensitive noninterference.
This approach is implemented for SPARK [53] — a practically used subset of Ada with no pointers or
heap-based data. SMT solvers are used for the minimization of the assertion formulas, and proof obliga-
tions establishing that preconditions are related properly to postconditions are emitted for processing in
the Coq proof assistant [55].

Nanevski et al propose Relational Hoare Type Theory (RHTT [44]). As the name suggests, there are
ingredients similar to the relational assertions of [4] that can be used for stating that variables do not
contain confidential information. More precisely, the preconditions and postconditions are dependent
types, with the latter potentially containing such relational ingredients. Via the Curry-Howard corre-

3



spondence [46], types can be “read” as logical propositions – the reason that it is reasonable for this
approach to be classified under “information flow specification using logical formulas”. In more detail,
the type STsec A (p, q) can be understood as a specification for a heap-manipulating program with re-
turn type A, precondition p and postcondition q. Here, the postcondition q “relates the output values,
input heaps and output heaps of any two terminating executions” [44]. Using RHTT, one can specify
both information flow policies and access control policies. For information flow security, the type system
guarantees termination-insensitive noninterference, which allows non-termination, but not the values of
public variables, to leak confidential information.

It is worth mentioning that relational Hoare logic (followed by [6, 4, 44]) was first introduced by
Benton in [12], where a simple WHILE language was dealt with, and secure information flow was
examined as one of the application areas of the logic proposed.

Temporal logics can be used to specify information flow requirements. In [20], the logics HyperLTL and
HyperCTL* are proposed for specifying hyper-properties, such as information flow properties. HyperLTL
supports interleaved universal and existential quantification over traces in the beginning of each formula.
An example from [20] is the formula ∀π1.∀π2.∃π3.ϕ that says: for all traces π1 and π2, there exist a
trace π3 such that ϕ is satisfied over the three traces. The formula ϕ can contain the standard modalities
of LTL, the standard connectives of propositional logic, and atomic propositions, which can implicitly
capture a notion of security domains of the states along the traces. This formula can be used to express
trace closure properties (e.g., [42]). The logic HyperCTL*, on the other hand, can be used to address
observers that can discern different branching behaviors.

In [9], Epistemic Temporal Logic [29] is used to express information flow policies. A distinguishing
feature of Epistemic Temporal Logic is the epistemic connectives K and L. Given a formulaφ, the formula
Kφ says that an agent knows φ because φ holds in all states consistent with the agent’s observations so
far. On the other hand, the formula Lφ says that φ holds in some of such states. Being concerned with
several alternative states (possible worlds) enables one to express security properties that are inherently
about multiple runs, such as noninterference.

In [24], the authors propose the temporal logic SecLTL to express conditional declassification policies.
A hide operator is introduced, allowing one to state that the observations of a system are not affected by
the initial values of secrets before a condition starts to hold. Semantically, the hide operator is interpreted
by considering all alternative paths of the target system started with different secret values, and requiring
that the observable parts of these paths coincide, until the condition starts to hold on the current path.

Temporal logics usually specify the security policy and security property at the same time. The most
natural verification method for a temporal logic specification is model checking. However, battling
against state space explosion is still an ongoing research area in software model checking [32]. The
verification of security properties is only more difficult than the verification of safety properties typically
addressed in software model checking. Thus the temporal logic specification of information flow is not
expected to lead to tractable analysis of real world software code.

Policy Specification Based on JML
A number of specification languages [25, 59, 28, 52] for Java source code build on the Java Modeling

Language (JML [56]).

In [28], two forms of policies for explicit information flow are considered – positive flows and negative
flows. An example of the former (resp. latter) is: the data in a formal parameter of a method in a class
should (resp. should not) come from the return value of another method in another class. Implicit flows
are not considered, and enforcing a flow policy amounts to guaranteeing a safety property. One way of
specifying a policy is by using sets. For the example of the positive policy, one can specify: it is ensured
(as a postcondition) that the return value must be in a set, and it is required (as a precondition) that the
parameter should be from the same set. An alternative way is to use ghost fields of classes. For the same
example, one can specify: it is ensured (as a postcondition) that a ghost field is set for the return value,
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and it is required that the ghost field is set when the parameter receives its value. No implementation
efforts are mentioned in [28].

In [25], the self-composition approach [11] is followed. A program cmd with public variable x is
(termination-insensitively) secure if we have

{x1 = x2} cmd1; cmd2 {x1 = x2},

where cmd1 and cmd2 are obtained from cmd by renaming the variables differently, including renaming
x to x1 in the former and to x2 in the latter. This allows to capture noninterference using classical Hoare
logic, with preconditions and postconditions specified in an extension of JML. The authors adapt the
Krakatoa tool to process Java programs annotated in the extended JML, and generate proof obligations
in the Coq proof assistant [55].

In [59], a different approach is proposed to specify noninterference properties in JML. This is via
the keyword \old and specification patterns. For instance, the postcondition ensures low == \old(0)
for a method states that the final value of the public variable low must be equal to the value of the
constant 0 in the beginning, which reflects that the final value of low is not affected at all by confidential
variables, guaranteeing termination-insensitive noninterference. It is also briefly investigated how to
use the diverges clause and ghost variables of JML to reveal that information is leaked via termination.
The author went on to develop a method to enforce termination-sensitive noninterference for Java via
a relational Hoare Logic. A relational predicate can assert something about the value of a variable in
two different states. The relational Hoare logic developed guarantees that the equality of the values of
low memory locations is preserved by the big-step execution of methods. The standard Hoare triples
are extended to Hoare n-tuples to capture different termination modes (e.g., diverging, terminating
normally, with exception, etc.). These relational n-tuples can in turn be specified in JML for relations
(JMLrel), and proved by a theorem prover such as PVS [47]. Note that proof automation is partial, and
part of the proofs need to be accomplished via human interaction.

Among the above information-flow specification languages/methods based on JML, the one of [28]
is closest in form to the direct specification of information flow policies via security domains, without a
backend support for detecting implicit flows. In comparison, the ones in [25] and [59] are more indirect,
considering either the sequential execution of two copies of a program or the simultaneous execution of
the program with it self in two states.

In [52], both direct specification in terms of security domains and the detection of implicit flows are
supported. This is by introducing a respects clause into JML* — an extension of JML. For each method,
a set of views can be specified using the respects clause. Each view is a set of locations, with the intuition
that locations outside of each view cannot interfere with locations in the view. A specification is then
translated according to the self-composition approach, generating proof obligations in Dynamic Logic,
that can be processed by the KeY tool (e.g., [1]). Support for sequential Java is claimed in [52]. It is
unclear, as claimed in the same paper, how often the proof obligations can be automatically processed
by Key.

Conditional Flow Policies
Some requirement languages provide the facility for explicitly stating conditional flow policies.
One line of work [15, 16, 14] enables the programmer to use “locks” in a program, and the information

flow policy can be modulated by the state of locks. An example is: in an online auction with hidden bids,
the bid of one bidder should not be revealed to other bidders before the auction closes. The status of
the auction can be captured by the status of a lock variable. The policy of each bid is weakened to
disclose the bid to everyone on opening the lock. Locks can be parameterized [16], which leads to the
ability to model more complicated phenomena. An example is that a monadic lock can capture that a
principal plays a particular role. Another example is that a dyadic lock can capture the trust relationship
between two principals, leading to the ability to specify principal hierarchies, such as the ones in the
Decentralized Label Model. The lock-based approach is developed to support Java, resulting in the
Paragon language [14].
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Another line of work [45, 38, 37] supports the dependency of flow policies on the current and future
values of program variables, and the values of certain fields of messages communicated between con-
current processes. Thus the policies are often called content-dependent flow policies. Information is not
allowed to leak via either the values of variables or the actual flow policies.

A different approach is to support conditional flow policies using explicit conditions and implicit secu-
rity domains — via relational assertions [6, 10, 5]. If the value of a variable is required to be the same
in a related pair of executions, then the variable is implicitly placed in the low/public security domain.

Presence Policies and Content Policies
Most often, security policies are specified for data content only: patient records, cryptographic keys,

passwords, account balances, etc. Sometimes the presence of data, or meta-data, can also be subject to
protection by information flow policies [43, 51, 22, 33, 48, 36, 13], since an attacker can be particularly
concerned with whether one type of communication happens or not, whether a field exists in a table or
an object, or how big an array or a table is. Most of existing work considering such tiered policies is done
for theoretical languages.

RIFL
RIFL [26] is a specification language for information flow security with the distinguishing aim of

achieving inter-operability of different tools for information flow analysis, different levels of abstraction,
and different security semantics. The RIFL language is semi-formal, with rigorously defined syntax and
intuitive semantics. A specification of security policies in RIFL comes in the XML format, and consists
of an interface specification articulating the information sources and sinks of concern, a set of security
domains (e.g., [41]) capturing the levels of protection, an assignment of categories of sources and sinks
to domains, and a flow relation describing what the allowed flows between domains are. It is worth
pointing out that the RIFL flow relations support intransitive information flow policies (e.g., [50]). RIFL
consists language-independent modules and language-specific ones. The former can be used for high-
level system models, while the latter for specific programming languages and intermediate languages.
Language-specific modules exist for Java source code and Dalvik bytecode. RIFL has been supported by
multiple tools including Joana [27], KeY [1], SuSi [49], and the RSCP security analyzer [40].

1.3 Analysis of Existing Specification Languages

In the CRISP project, the developed techniques need to be usable by software developers and architects.
The less time engineers need to invest in learning a domain-specific formalism, the better chance that
the corresponding technique can get exercised in practice. Thus specification languages based on logical
formulas are unsuitable since the formulas are complicated at times and it is often difficult to understand
them without understanding the underlying logic. In comparison, specification languages based on
security levels/labels/domains are more “user-friendly”. The latter class of specification languages still
permits sufficient generality and flexibility in that the security labels or domains can be tailored to specific
application scenarios. Even if the labels have structures as “complicated” as those of the Decentralized
Label Model, it is still easier for an average developer to use them than a specification language based
on Dynamic Logic. Thus security labels/domains are an important language concept for the specification
language to be developed in CRISP.

A related issue is automation. The additional cost of the software developers and architects in terms of
time and energy in introducing security guarantees need to be minimized. To this end, policy specifica-
tions amenable to automated analysis and verification are desirable. The specification languages based
on logical formulas usually permit high precision in the analysis in that false positives occur in fairly
rare cases. However, such languages are supported by theorem-proving techniques, and precision comes
at the price of the loss of full automation. A desirable approach is to rely on automated analyses and
resort to theorem-proving for non-security properties only when and where needed [35]. In this case
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the restricted amount of non-automated work proves safety properties that does not have to do with
the specification language. The need for automation speaks again against the logically based languages,
while in favor of the ones based on security labels and security domains.

A different issue is the granularity of specification. As required in the CRISP project, the approach to
be developed should support Java source code. The specification language mainly addresses the level
of applications rather than the operating system. Thus the security labels and security domains should
apply to the entities in Java source code such as variables, fields, parameters, return values, classes, etc.
It is desirable, although not required, for the specification language to be easily adapted to support other
programming languages, as RIFL can [26].

The need for explicitly supporting declassification is not immediate. First of all, declassification can be
indirectly expressed by intransitive information flow policies (e.g., [50]) with the help of additional se-
curity domains capturing down-graders. Second of all, once the flows between the security domains are
clear, what needs to be done is to ascertain that the “dangerous” flows are required by the functionalities
and in a sense unavoidable. This is not very different from what needs to be done when downgrading
operations are explicitly used. Hence the support for declassification in certain existing specification
languages (e.g. [43, 24]) does not necessitate the same requirement for the specification language to be
developed for CRISP.

The need for explicitly support of presence policies and content policies is not immediate. From
the specification viewpoint, a language supporting the use of security labels and security domains can
readily encode the separation of presence policies and content policies. Hence the direct support for
presence policies and content policies in certain existing specification languages (e.g., [51, 22]) does not
necessitate the same requirement for the specification language to be developed for CRISP.

The need for specifying conditional flow policies (as in [16, 5]) is also not immediate. Compared with
their non-conditional counterparts, conditional flow policies usually have more complicated specifica-
tions, and it is more difficult to articulate their security guarantees. The ability to specify conditional
flow policies should rather be seen as one potential extension of the specification language to be devel-
oped, rather a requirement for it.

1.4 Requirements for the Specification Language

Based on the analysis of the existing specification languages, and the context of the CRISP project, we
obtain the following requirements for our specification language to be designed later in the project.

Machine Readability.
The specification language needs to be machine-readable. This requirement is in fact shared by all the

existing specification languages for data and information flow. In our context, the output of a tool for
information flow analysis of some other component, or the assumptions made about the environment,
needs to be fed to the tool performing the information flow analysis for the current application/compo-
nent. Machine-readability is necessary for gluing together different tools, and/or different analysis to
provide end-to-end, global results.

Human Readability.
It is an obvious requirement that the specification language needs to be easily readable and under-

standable by software architects and engineers. As argued in Section 1.3, this induces the requirement
that the specification language should not be based on logical formulas, but rather on flows between
security labels or security domains.

Tool Independency.
It is likely that the different software components in a large software system are analyzed by different

tools. Thus it is desirable for the specification language to be a common language spoken by the multiple
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analysis tools in use. It can be seen that tool independency is not a feature commonly possessed by the
existing specification languages in the literature (RIFL [26] is an exception in this respect), although it
is desirable in the context of CRISP.

Semi-formal.
The specification language is supposed to be semi-formal — with formally defined syntax, and infor-

mally described semantics. Formal syntax is necessary for machine readability. Informal semantics leaves
room for different formal interpretations of the security requirements, such as with different noninterfer-
ence properties. The accommodation of different formal semantics also caters for the diversity of tools
that enforce different formal security properties.

XML Compatibility.
The use of the XML format eases the exchange of specifications between different analysis tools in use,

and potentially between the multiple collaborators involved in the same project. It also facilitates the
deep syntactical validation of the well-formedness of specifications using techniques like DTD (Document
Type Definition) or XML Schema.

Java-targetedness.
As specified in the project proposal, Java is the programming language that should be targeted by the

specification and analysis techniques for data and information flow in the project. Support of Java source
code by the specification language to be developed is required.

Suitability for Interfacing with Library Analysis.
Apart from addressing the data and information flow within a software application, another important

goal to be accomplished in the CRISP project is to combine the analysis of software components with
the analysis of the use of resources such as the network, the file system, the clipboard of the underlying
operation system, etc. Thus it is important for the application-level analysis developed by MAIS to
interface well with the library analysis developed by the Software Technology Group at TU-Darmstadt.
This includes the support of the analyses developed by both MAIS and STG at the level of the specification
language.

Resource-awareness.
As mentioned above, the data and information flow policies of concern need to go beyond user ap-

plications and also cover software libraries that deal with system resources. Thus the specification lan-
guage needs to be equipped with features that are concerned with resources. In more detail, out of the
combined analysis by MAIS and STG, a system resource needs to be a viable source or sink of a flow.
Resource-awareness makes the specification language to be developed not only applicable to application
code, but also to system-level code — a rare feature in existing literature on specification languages for
data and information flow.

Consistency of Security Classification According to Assumption.
As already stated in the introduction, the specification language needs to be able to convey require-

ments of data and information flow as well as the assumed flow of information in the environment of
an application or one of its components. For the requirements to be sensible, the security classification
(in the form of security labels or security domains) of sources and sinks of the application/component
needs to be consistent with the assumption about the environment of the application/component, as
specified in the assumption/output sub-language. For instance, if there is assumed information flow in
the environment from a confidential sink to a source, then the source must be confidential as well in
order for the information from the sink not to be leaked.
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Common Notion of Sources/Sinks in Output Language and Requirement Language.
The data and information flow of a component in the environment can be used to check whether a

requirement specification is sensible, as mentioned above. A different scenario is: in case such output has
been produced from a component, it can be used instead of the component itself, for checking whether
data and information flow requirements are satisfied by the component. To facilitate checking output
against requirement specification in either case, it is desirable for the two to have a common notion of
information sources and sinks.

Support for Identification of Common Interface of Two Components.
The information flow specification that is output from a component B is relevant for a different compo-

nent A in that the “slice” of the output with respect to the common interface between the two components
can be used, and suffices, as the assumption for the environment of A, when performing an information
flow analysis of A. When considering an abstract environment for A, rather than a concrete component B,
“slicing” the assumption about the environment over the common interface between A and the environ-
ment is sensible as well. Thus it is desirable for the specification language to facilitate the identification
of the common interface of two components, and potentially be able to express such common interface
if it is beneficial to do so.

1.5 Summary of Requirements for the Specification Language

We have identified a number of requirements for the specification language for data and information
flow, to be defined at the next stage of the CRISP project. This is based on the setting and purpose for
such a language given in the proposal of the project, the potential usage of such a language that can
be derived from this setting, and an extensive literature survey on existing specification languages for
specifying the flow of data and information in software systems.
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2 The Java Native Interface - A Literature Review of Analytical and Constructive Research

In CRISP, we develop new methods to analyze the capability usage of libraries implemented in C and
C++ which are closer to the system than libraries written in Java or scripting languages. As languages
like Java provide abstractions over the details of the operating system layer and guarantees on the exe-
cution of programs written in these languages (e.g., memory safety), they are considered safe languages.
However, these abstractions have to be bound to system functionality to allow programs to have ef-
fects on the system (e.g., writing a file). The authority and ability to perform such an effect is called a
capability.

Also, as values have to be passed to system functions, low-level attacks can also use programs written
in those safe languages as their entry point into a system. This makes these programs as vulnerable as
programs written in languages without safety guarantees.

One particularly interesting case is the Java platform with its Java Native Interface (JNI) to bind li-
braries and operating system functionality written in C or C++. We chronologically outline the complete
course of research in the area of JNI security and safety in the following.

2006
While there has been preceding work about other FFIs, Michael Furr and Jeffrey S. Foster were among

the first to specifically deal with the JNI’s security. In 2006 they published their paper ”Polymorphic
Type Inference for the JNI” [65] in which they present a type-inference system that is used to check
the type safety of programs that use the JNI. As class names, field names and method signatures are
represented by strings in the JNI, they track the flow of string constants through the program. This
allows them to assign type signatures to the JNI functions and to infer them for most user-defined
functions. The constraints they use for inference are equations, unification constraints are assuring e.g.
that for type variableName = function(argument), type matches function’s return type. Functions
can even be treated polymorphically using instantiation constraints. These instantiation constraints are
more complex equations that model substitutions for quantified variables for each instantiation site. They
solve these constraints with a variant of Fähndrich et al.’s worklist algorithm for semi-unification. They
present an implementation of their concept, their type inference tool works on the C code and issues
warnings upon encountering a type error. A particularity lies within the fact that, while e.g. jstring
is just an alias for jobject, they enforce the use of the correct alias, i.e. map jstring to String and
not Object. Their implementation further ignores string operations that could hide type information,
potentially introducing imprecisions, yet they claim that this is not common practice anyway. They run
their analysis on a set of programs using the JNI, discovering 155 erros which stem from declaring a C
function with an incorrect arity, software rewrites, wrong parameter type specifications, type mismatches
and incorrect namings. They produce 44 false positives and in 22 cases the analysis had insufficient
information about a string.

In the same year, Gang Tan et al. published their paper ”Safe Java Native Interface” [80], present-
ing their SafeJNI system which, by static and dynamic checks, retro-fits native C methods to enhance
their safety and captures safety invariants whose satisfaction aims at guaranteeing a safe inter-operation
between Java and native code. More precisely, they leverage CCured, a system that statically and dynam-
ically checks C code, to provide enhanced functionality for checking C code that uses the JNI. CCured
already classifies pointers as SAFE (no pointer arithmetic, not type cast), SEQ (pointer arithmetic, not
type cast, gets bound checked) and WILD (dangerous type casts, e.g. integer to pointer, information
about original type attached). The authors add two more, HNDL (cannot be read or written, pointer
only for passing to JNI calls) and RO (read only, prevents tampering with the JNI interface pointer).
Moreover, they insert dynamic checks into the code, ensuring that objects passed from C to Java are of
the right class, that Java methods are invoked with the correct number and the correct types of argu-
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ments, that Java’s access control is enforced (private, public, etc.), that Java array accesses are bounds
checked and that exceptions are correctly handled by the native code. In addition, they present two con-
cepts to ensure safe memory management, one of them involving a garbage collector, that keeps track
of the JNI dynamic memory functions and ensure correct usage. The authors evaluated their system by
injecting unsafe code into ”otherwise safe programs” and showed that all vulnerabilities were caught.
To evaluate performance, they applied their system to the Zlib library and showed that execution time
is increased by 63%. This is more than the 46% an unmodified CCured incurs but less than the 74%
they measured for a Java implementation of the library. Finally, they discovered a vulnerability in the
library relating to a function receiving an integer as an argument that is then cast to a pointer and for-
mally proofed that with their system native code will not violate memory safety or access Java’s memory
arbitrarily.

2007
In 2007, Gang Tan and Greg Morrisett proposed ”ILEA: Inter-Language Analysis across Java and C”

[82], a framework that models C code on an abstract level to help Java analyses understand its behavior
and make inter-language analysis more precise. They introduce an extension of the Java Virtual Machine
Language to model C code and present an automatic specification extractor for C code. Namely, they
add three more operations, choose τ which chooses a random object of type τ, mutate which mutates
an existing object and top which may have any type-preserving effect on the JVM. Figure 2.1 illustrates
this.

for (int i = 0; i < choose(int); i++) {

Object x = choose(Object);

mutate(x);

}

Figure 2.1: An example of ILEA-modeled C code

The code mutates randomly many existing objects but can e.g. not allocate memory. Their automatic
specification extraction is based on the CIL framework, a LLVM Bitcode-like intermediate representation,
to get rid of many of C’s complexities. The extractor can deal with most of C’s functionality, in doubt top
gives the most conservative approximation of behavior. They evaluate on four programs by modifying
the Jlint Java analysis to understand C code and search for null-related bugs. They find 25 of them in
the programs with one false positive.

Also in 2007, Martin Hinzel and Robert Grimm presented ”Jeannie: Granting Java Native Interface
Developers Their Wishes” [67]. Jeannie is a new language that nests Java and C code within each other
to enhance productivity, safety, portability and efficiency. The combination of the two languages resides
in the same file and compiles down to JNI code. Code follows mostly the two languages’ syntax, a
backtick operator indicates switches between the two. Jeannie does not need fully qualified names for
Java objects and the compiler can verify type and name consistency across languages boundaries. throws
clauses are checked to declare all exceptions, even in native code, resources are managed automatically
like in Java. The compiler chain the authors provide takes a Jeannie file with mixed code and produces,
after preprocessing, syntax checking etc. a shared object file and Java bytecode. Jeannie avoids manual
synchronization with MonitorEnter() and MonitorExit() by allowing synchronized statements in C
code. Even exceptions can be handled Java-style in C code through try statements. Two special functions
for copying regions of arrays and strings between the two languages with adequate encoding speed up
bulk access. A with-like statement allows disciplined access to Java arrays and strings, the error-prone
Get.../Release... pairs can be avoided. The evaluation, in which they ported a JNI program to
Jeannie, shows that the amount of code in JNI programs can be significantly reduced. The performance
penalty compared to a common JNI implementation ranges from 4% to 86% in their test cases, some
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examples even showed a 5% speedup. Especially array accesses through the with-like statement showed
to be up to 75 times faster.

2008
In the following year, Gang Tan and Jason Croft published ”An Empirical Security Study of the Native

Code in the JDK” [81] where they describe how they established a taxonomy of bugs in the Java Devel-
opment Kit’s native code to perform a systematic search to discover bugs and finally propose remedies
for them. The authors discovered 59 previously unknown bugs, leveraging existing tools and providing
new ones. To scan for common C bug patterns they use Splint, ITS4 and Flawfinder (static analysis
tools that highlight probable bug patterns) and for JNI specific bugs they provide grep-based scripts and
scanners implemented in CIL. They manually inspected the results as all of the analyses provided high
false positive rates (97.5-99.8% for the off-the-shelf tools). They focused on the share/native/java
and solaris/native/java folders. Their heavy reliance on manual inspection made this limitation nec-
essary. They stress that the high rate of false positives is also due to the fact that a single language
analysis is less precise than an inter-language analysis would be, as the former could e.g. not know if
inputs that are unchecked in C code might get a sufficient sanitization in the Java part and thus has to
conservatively assume potential threat.

Yuji Chiba introduced ”Java heap protection for debugging native methods” [64] the same year, a
feature that detects and locates invalid memory references to the JVM heap. As these can stem from
either the JVM implementation or the native code, the latter being hard to trace, it is supposed to
help developers find bugs. The feature uses page protection which prevents threads executing native
methods from referring to the JVM heap directly, as this should only happen through the JNI. This
is mandated by most common JVMs like Hotspot (used in the OpenJDK) which this paper uses. As
opposed to mainstream operating systems, the protection feature controls permissions by thread and not
by process. The author stresses that the feature cannot universally detect bugs but only those specific
to heap reference errors. It further requires modification of the OS (about 500 LOC) and the JVM
(about 60 LOC) which limits practicality. The performance overhead introduced depends heavily on
the frequency of native method calls, ranging from 2% for sporadic use to 54% for frequent use in the
author’s experiments.

Also in 2008, Goh Kondoh and Tamiya Onodera released their paper ”Finding Bugs in Java Native
Interface Programs” [68]. They present static analysis techniques to find bugs in programs using the JNI,
focusing on four distinct error patterns: missing statements for explicit JNI exception handling, mistakes
in resource management due to erroneous manual allocation, local references that are not converted to
global references when living across multiple method invocations and calls to disallowed JNI functions in
critical regions. All four patterns are caught by typestate analysis, automata-like state transition systems
that ensure the correct execution order of operations on an instance of a given type. They implement
their analyses with BEAM (a Lint-like analysis tool that leverages theorem proving to check the feasibility
of potential errors) to check four open-source programs that use the JNI (Harmony, Java Gnome, Gnu
Classpath and Mozilla Firefox) for errors. They discovered 86 JNI-specific bugs (and 114 non-JNI bugs).

2009
In 2009, Siliang Li and Gang Tan published ”Finding Bugs in Exceptional Situations of JNI Programs”

[74], proposing a static analysis framework to examine exceptions in JNI programs and report if errors
occur with respect to incorrect exception handling (performing cleanup work, explicit returning etc.).
Their framework consists of three main components. The first is a standard inter-procedural dataflow
analysis algorithm with extra conditions to track exception states in which JNI exceptions are pending.
The second component checks the succeeding operation for all these states against a whitelist of allowed
operations and uses a taint analysis to simulate the propagation of faults. The third component trans-
forms the input program after a warning has been issued and then recomputes the dataflow equations to
avoid duplicate warnings for the same error. As their scheme of detecting erroneous exception handling
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resembles Kondoh and Onera’s from the previous paragraph, Li and Gang justify why their work is better.
They outline that the previous approach was incomplete as it would only catch exceptions thrown in a
particular way (Call<Type>Method) while the JNI allows for many more possibilities (Throw/ThrowNew,
Get<Type>ArrayElements etc.). They claim that their new approach is more complete. The code they
evaluate on is the one checked in the empirical study from 2008 plus the share/native/sun folder and
three non-JDK programs (java-posix, java-gnome and java-opengl). Thanks to their third component,
they have low false positive rates of a 15.4% average over all the programs and discover 716 errors.

Also in 2009, Byeongcheol Lee et al. released ”Debug All Your Code: Portable Mixed-Environment
Debugging” [69] which is a composition approach for simple, portable and powerful mixed-environment
debuggers. An intermediate agent interposes on language transitions and controls and reuses single-
environment debuggers. The authors exemplify this by introducing Blink, a debugger for Java, C and
Jeannie. Blink requires 9000 lines of new code but greatly facilitates debugging JNI applications. The
debugger features execution control (the ability to start, stop, halt at breakpoints and single-step through
a program), context management (keeping track of source code and call stack traces) and data inspection
(allowing the inspection of variables and values at certain points in the program execution). There are
soft-mode debuggers in which the debuggee has to process certain basic commands for the debugger
and hard-mode debuggers where this is not the case. Most C debuggers are hard-mode, Java debuggers
typically soft-mode. The latter, influencing the debuggee’s behavior, can lead to undesired side-effects.
Blink is soft-mode, but warns the user of inconsistencies that may arise. Blink has advanced features
like the environmental transition checker which detects uncaught exceptions and unexpected null values
and read-eval-print loops which allow interpretation of arbitrary source language expressions based on
the current application state. The authors’ evaluation of Blink showed their debugger to be portable
to different OSs and JVMs and to have a low time overhead of an average of about 10% for their test
programs.

2010
Joseph Siefers, Gang Tan and Greg Morrisett presented ”Robusta: Taming the Native Beast of the

JVM” [76] in 2010, introducing a novel framework to provide safety and security for Java applica-
tions and applets through software-based fault isolation which places the native code into a sandbox.
Their sandboxing is based on Google’s Native Client (sandboxing technology that allows execution of
untrusted C/C++ code in a browser), extending it with support for dynamic linking and loading of
native libraries. To make the code work inside the sandbox, fake interface pointers which reside in an
unmodifiable memory region, called ”trampolines”, redirect JNI calls to trusted wrappers outside of the
sandbox which perform safety and security checks. For system-calls inside the sandbox, system-call tram-
polines redirect to system-call wrappers that connect to the JVM’s security manager to check permissions
and leverage Java’s existing security infrastructure. Trampolines are one-way and the only way through
which control can escape the sandbox, entry into the sandbox is provided by so called ”springboards”
without further functionality. They experimentally evaluated their results on five different JNI programs
(java.util.zip, libec, java.lang.StrictMath, libharu and libjpeg) to see that performance overheads
are one-figure for applications with few context switches while they surge for applications with many to
over 700%.

The same year, Byeongcheol Lee et al. published ”Jinn: Synthesizing a Dynamic Bug Detector for
Foreign Language Interfaces” [70]. They show how dynamic analyses can be synthesized from state
machines to detect FFI violations and demonstrated this on the example of the JNI. They identified
three big classes of rules that enforce safety for the JNI: JVM state constraints, type constraints and
resource constraints that each can be represented by a type of state machine. They use state machines to
synthesize dynamic analyses from them, the synthesizer outputs Jinn, a shared object file automatically
loaded by the JVM through the JVM tools interface which then monitors program events and state,
throwing an exception upon encountering misbehavior. The three constraint classes are subdivided
to form nine different automata specifications that model the following checks: check if the current
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thread matches the used JNI pointer’s thread, check that no exceptions are pending and no critical
region is open upon sensitive calls, check parameters that may not be NULL to be not NULL, check
that parameters match signatures, check that no final fields are written, check that no overflows, leaks,
dangling references or double frees occur. Their evaluation showed an average of 14% runtime overhead
for diverse benchmarks. They ran Jinn over three widely-used programs and uncovered two overflows
of local references and one dangling reference in Subversion, one nullness-bug and one dangling local
reference in Java-gnome and one violation of a typing constraint in Eclipse.

2011
In 2011, Siliang Li and Gang Tan introduce ”JET: Exception Checking in the Java Native Interface”

[75], a static analysis framework that extends the exception checking of Java (every method that can
throw exceptions must have an appropriate throws clause) to native code. Their two-stage process first
automatically eliminates all non-interface code from the code to be analyzed as only interface code uses
JNI functions to inspect and change Java state. This speeds up analysis by a factor of about 60 for
their test programs. Their following fine grained analysis tracks exception states to check for erroneous
or lacking exception throwing declarations. It is path-sensitive to account for the correlation between
exception states and other execution states, e.g. JNI methods throw exceptions and return special values
upon encountering failures, if code checks one of them, subsequent state has to take this correlation
into account. The analysis is further context-sensitive as operations using the JNI often involve multiple
calls. They ran their analysis on 15 different JNI programs and the tool reported 18 warnings of which
12 were true bugs. The false positives were due to the inability of the program to track exception types
stored in string variables so the conservative assumption of java.lang.Exception as the type resulted
in a mismatch.

Also in 2011, Du Li and Witawas Srisa-an presented ”Quarantine: A Framework to Mitigate Memory
Errors in JNI Applications” [71], a runtime system that can identify objects accessible by native meth-
ods and move them to a special ”quarantine” area of the heap. This allows the application of heap
protection techniques for native languages that did not work for Java before. The separation protects
against out-of-bounds copying, buffer overflows, mistakes by pointers as integers and memory leaks by
erroneous dynamic memory management. The separate heap is much smaller and as many heap pro-
tection techniques work best for small heaps, Quarantine enables many of them. The authors do not
present or mandate any specific protection mechanisms but keep their system configurable and open.
Their implementation builds on the Jikes RVM, a Java Virtual Machine written in Java destined for re-
search purposes, and features a special hybrid garbage collector as well as read- and write-barriers for
separation. The runtime performance penalty Quarantine incurs showed to range from 4% to 24% for
diverse tests, best performance could be reached with a heap five times the minimum required size.

2012
In 2012 multiple papers on JNI security were released, among them ”JATO: Native Code Atomicity for

Java” [72] by Siliang Li, Yu David Liu and Gang Tan in which they present JATO, a system that enforces
atomicity of native methods when invoked by Java through the JNI. The addition of atomicity aimed at
facilitating the design of parallel programming models using the JNI. To that extent, JATO identifies the
set of Java objects that need to be protected for atomicity with a constraint-based inference algorithm
which can extract memory-access constraints for both Java and C uniformly. This is based on the obser-
vation that despite different syntax and semantics both languages access memory in a similar manner. In
their standard approach, atomic blocks are whole native methods. They introduce and evaluate differ-
ent locking schemes, locking around just the regions that access critical objects proved most efficient in
their prototype implementation. This implementation generates the Java-side constraints with Cypress
(a static analysis framework with focus on memory access patterns) and native-side constraints are gen-
erated with the help of CIL. Even with their most optimized locking scheme, the locking introduced more
overhead than performance was gained through parallelization for most test applications.

18



In addition, Gang Tan presented ”JNI Light: An Operational Model for the Core JNI” [79] the same
year. It introduced JNI Light (JNIL) which is a formalization of a common model of (a part of) Java and
its native side. The Java-side language is a subset of the JVM Language, the native-side language is a
RISC-style assembly language augmented with JNI functions. JNIL models a shared heap, but as Java
takes a high-level view on the heap as a map from labels to objects, while native code takes a low-level
view as a map from addresses to primitive values, a compromise is needed. JNIL adopts a block model
where a heap is a map from labels to blocks and a block is a map from addresses to primitive values.
This way, a block may hold a Java object representation or a memory region allocated by native code,
simplifying garbage collection while accommodating to the low-level view. JNIL does not commit to any
object-representation strategy, a representation function maps objects to a block. Method calls from both
languages share a call stack whose frames are either Java frames or native frames. Java exceptions are
indicated by a special exception frame at the top of the method call stack while a native exception is
recorded as a special configuration of a native frame. According to real behavior, JNIL unwinds the stack
for Java exceptions and continues execution for JNI exceptions. JNIL records Java references available
to a native method in a set associated with a native frame such that automatic freeing is possible. Tan
presented formal semantics for his model, admitting to a number of simplifications like excluding arrays
and assuming a specific calling convention. To show JNIL’s utility, the author formalized a static checking
system in JNIL which checks native code for violations of Java type safety and presented a soundness
theorem.

Also in 2012, Mengtao Sun and Gang Tan published ”JVM-Portable Sandboxing of Java’s Native Li-
braries” [77], introducing Arabica, an enhancement of their previous sandboxing approach Robusta to
be portable between different Java VMs by avoiding modification of VM internals. Arabica relies on a
combination of the Java Virtual Machine Tool Interface (JVMTI) and a layer of stub libraries. Just like
the JNI, the JVMTI is supported by nearly all JVM implementations. A JVMTI agent registers callback
functions for the native-method-bind events which occur when a native method is bound to the adress
of a native library function that implements the native method. The callback then initializes the safety
checks. Like Robusta, Arabica provides JNI interface function wrappers. Yet this is not enough for a
comprehensive sandboxing as the JVMTI offers no support for a native-library-loading events, rendering
them uninterceptable. Arabica thus introduces a level of indirection through trusted stub libraries which
perform native library loading, symbol resolution, native method calling and returning. To evaluate,
the authors sandboxed the standard native libraries in the JCL, reducing the JCL’s trusted code base and
making it possible to evaluate performance with standard Java benchmark suites. Instead of putting all
code into the sandbox, they only sandbox native code that is not part of Java’s security infrastructure for
safe separation and portability. As Arabica also leverages Java’s security manager for system calls from
native code, they assign permissions to the native code on a per-package basis, choosing the minimum
of required permissions. Evaluation on the same set of JNI programs they evaluated for Robusta, shows
that the performance overhead for context switch-intensive applications is more than doubled compared
to Robusta, rocketing it to around 1600% (with slight differences between different JVM implementa-
tions). Yet for common Java benchmarks, overheads of between 3% and 12% can be seen, in one case
more than 110% are observed. This shows that the increased compatibility comes with additional costs
to the already high costs of security through sandboxing.

2013
In 2013 ”JNICodejail - Native Code Isolation for Java Programs” [66] by Behnaz Hassanshahi and

Roland H. C. Yap was released. They present a JNI sandboxing approach as an alternative to Arabica.
Unlike Arabica, it does not use Software Fault Isolation but a tightly integrated, library-isolating memory
model. It is built on top of CodeJail, an application-transparent isolation mechanism for untrusted
libraries that need to interact closely with the main program. Trusted and untrusted code share an
address space, if untrusted code wants to write to the trusted code’s memory, a copy is created in the
untrusted memory and changes have to be explicitly synchronized. This synchronization can be used for
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safety checks, system calls are restricted by a policy. They map this concept to the JNI, considering native
methods as untrusted library code and the Java part as trusted. A key aspect is that if an untrusted native
method only reads and does not write trusted Java memory, direct access can be granted which improves
performance while Arabica redirects any calls. This also enables JNI functions that return direct pointers
outside the sandbox (untrusted) region to work with good performance. Evaluation was inconclusive,
sometimes Arabica performed better, sometimes JNICodeJail.

2014
The list of this year’s papers can naturally not claim completeness, yet we present what has been re-

leased so far. Siliang Li and Gang Tan published ”Exception Analysis in the Java Native Interface” [73]
in which they present a static analysis framework called TurboJet which unifies, improves and extends
their 2009 concept for finding exception handling errors and their 2011 JET system for finding inconsis-
tent exception declarations. They improve precision and efficiency of their former approaches, conduct
a more thorough evaluation featuring more benchmarks and add an Eclipse plug-in which supports a
software developer via a GUI in spotting the mistakes TurboJet detects. They compare TurboJet with
their previous empirical security study and state that they find nearly thrice as many true bugs with a
lower number of warnings, thus heavily decreasing the false positives.

Also this year, Mengtao Sun and Gang Tan introduced ”NativeGuard: Protecting Android Applications
from Third-Party Native Libraries” [78]. They observed that Android poorly manages the security risk
Java applications’ native libraries pose. Most Android applications are written in Java and they make
pervasive use of native libraries. In a survey they found that 86% of the top 50 applications in the Google
Play store (the main source of software for most Android users) use at least one native library. The in-
crease in application complexity renders the need for native performance more pressing. The authors’
NativeGuard system separates a Java application’s native code into a second application, leveraging An-
droid’s process-based protection. This second application with native code gets minimal privileges, it
does not share the full privileges of the Java part anymore. To separate the application’s code, the appli-
cation’s launcher is modified, proxy native libraries which reside with the Java part and redirect to the
native part in combination with inter-process communication (IPC) allow the two parts to communicate.
Stub libraries in the native part are required to jump back to the Java part to e.g. resolve opaque refer-
ences. Upon JNI function calls, runtime type checking is performed. Much of this resembles the Arabica
approach, yet the Dalvik JVM lacks the JVM Tool Interface and thus a new approach is necessary. Their
experiments showed a performance overhead ranging between 0.54% to 17.16% for their benchmarks,
another experiment showed a strong correlation between performance overhead and context switches,
like for Robusta / Arabica.
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