RiCaSi: Rigorous Cache Side Channel Mitigation
via Selective Circuit Compilation

Heiko Mantel, Lukas Scheidel, Thomas Schneider,
Alexandra Weber, Christian Weinert, and Tim Weifimantel

Technical University of Darmstadt, Germany
{mantel,weber,weissmantel}@mais.informatik.tu-darmstadt.de,
{scheidel,schneider,weinert}@encrypto.cs.tu-darmstadt.de

Abstract. Cache side channels constitute a persistent threat to crypto
implementations. In particular, block ciphers are prone to attacks when
implemented with a simple lookup-table approach. Implementing crypto
as software evaluations of circuits avoids this threat but is very costly.

We propose an approach that combines program analysis and circuit
compilation to support the selective hardening of regular C implemen-
tations against cache side channels. We implement this approach in our
toolchain RiCaSi. RiCaSi avoids unnecessary complexity and overhead
if it can derive sufficiently strong security guarantees for the original
implementation. If necessary, RiCaSi produces a circuit-based, hardened
implementation. For this, it leverages established circuit-compilation tech-
nology from the area of secure computation. A final program analysis
step ensures that the hardening is, indeed, effective.

1 Introduction

Cache side channels are unintended communication channels of programs. Cache-
side-channel leakage might occur if a program accesses memory addresses that
depend on secret information like cryptographic keys. When these secret-depen-
dent memory addresses are loaded into a shared cache, an attacker might deduce
the secret information based on observing the cache.

Such cache side channels are particularly dangerous for implementations of
block ciphers, as shown, e.g., by attacks on implementations of DES [5867],
AES [1112/57], and Camellia [67/73/59]. A key reason why block-cipher implemen-
tations are vulnerable to cache-side-channel attacks is that they traditionally use
secret-dependent accesses to lookup tables in memory. For instance, the origi-
nal AES specification [20] recommends lookup tables to increase performance.
Such lookup-table-based AES implementations are still available in many crypto
libraries, including, e.g., OpenSSL [55] and mbedTLS [7].

To avoid cache-side-channel leakage, block ciphers can be implemented as cir-
cuits that are evaluated in software, e.g., using the bitslicing technique [T2/4735].
For instance, Matsui and Nakajima [47], as well as Késper and Schwabe [35]
argue why their circuit-based AES implementations are side-channel resistant.

Manually developing circuit-based implementations from algorithm specifi-
cations is costly and error-prone due to the huge gap between the two levels

Published in:

S. Krenn et al. (Eds.): CANS 2020, LNCS 12579, pp. 505-525, 2020.
© Springer Nature Switzerland AG 2020

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-65411-5_25

https://doi.org/10.1007/978-3-030-65411-5_25

of abstraction. Moreover, to run software-based circuits in a real-world setting,
additional code is needed, e.g., to initialize the inputs. Since this additional code
is a potential source of leakage, its development requires a high level of rigor.

Unfortunately, there is currently no end-to-end tool support for this complex
task: Existing tools for generating circuit-based crypto implementations require
the input specification to be already at the level of a circuit description [48/[9].
Conversely, existing tools for high-level synthesis that operate, e.g., on ANSI C
or SystemC programs do not generate software. Instead, they transpile code
to hardware description languages like Verilog or VHDL [51], from which logic
synthesis tools (e.g., [62]) can derive FPGA configurations or ASIC designs.

We address this open problem by proposing an approach that hardens high-
level C implementations by translating them into circuit-based software imple-
mentations. Our approach applies the hardening selectively, based on automatic
quantitative program analysis. To support the translation to circuit format, our
approach leverages existing compiler infrastructures from the area of secure com-
putation, where circuit compilers, e.g., [43I32I40/72I6TT5], are used to generate
circuit descriptions that obliviously evaluate functions on private inputs via
homomorphic encryption [27] or interactive cryptographic protocols [7TT28].

We implement our approach in our toolchain RiCaSi, which takes as input a
regular C implementation (e.g., of a block cipher) and outputs a circuit-based x86
binary together with a reliable quantitative security guarantee with respect to
cache-side-channel leakage. Naturally, these security guarantees are based on
established formal models. RiCaSi builds on the circuit compiler HyCC [I5] and
the program analysis tool CacheAudit [25], augmented with novel implementations
and extensions required for the toolchain integration. Supplementary downloads
are freely available at jwww.mais.informatik.tu-darmstadt.de/ricasi.html.

We evaluate RiCaSi across lookup-table-based AES implementations from
the libraries OpenSSL [55], mbedTLS [7], Nettle [49] and LibTomCrypt [41], and
across implementations of DES [52], 3DES, and Camellia [4] from mbedTLS.
RiCaSi is easily applicable to all of these implementations. Moreover, it success-
fully improves their level of cache-side-channel security. For instance, the analysis
integrated in RiCaSi derives an upper bound of 73.82bit on the amount of in-
formation that the original OpenSSL AES might leak to an access-based cache
side-channel attacker. After the conversion to a circuit-based implementation,
this leakage bound drops to 0bit. These upper bounds are based on rigorous
program analysis and, hence, constitute reliable security guarantees.

Overall, we summarize our contributions as follows:

1. We present RiCaSi, a toolchain that semi-automatically produces circuit-
based implementations of block ciphers with corresponding quantitative
security guarantees on cache side-channel leakage.

2. We evaluate RiCaSi across implementations of AES, DES, 3DES, and Camel-
lia, demonstrating the effectiveness of our approach by obtaining 0 bit upper
leakage bounds for previously vulnerable implementations.

3. We furthermore evaluate the run-time and storage overhead induced by RiCaSi,
demonstrating its practicality for security-critical applications.

www.mais.informatik.tu-darmstadt.de/ricasi.html

2 Preliminaries

2.1 The Block Ciphers AES, DES and Camellia

AES. The Advanced Encryption Standard (AES) [53] is a block cipher that
encrypts 128 bit message blocks using a symmetric secret key of size 128, 192,
or 256 bit. To this end, AES creates so-called round keys from the secret key. The
first round key is added to the message block using bitwise XOR. The remaining
round keys are used to transform the block in multiple rounds.

The original AES proposal [20] suggests optimizing performance by precom-
puting the results of the transformation rounds for all possible inputs and storing
them in lookup tables. Then, one simply needs to look up the transformation
result from the table at the index corresponding to the current round input. The
round inputs are the round key and the current state of the transformed mes-
sage. Implementations that follow this table-based technique are prone to cache
side-channel attacks: The indices of the table accesses and, hence, the addresses
of the accessed memory locations depend on the secret message and round keys.
If a memory entry is loaded into a cache that is shared with an attacker, the
attacker might notice the presence of the entry in the cache and deduce secret
information. He might even recover the entire secret key [TTI2I3TI36I6I5].

DES. The Data Encryption Standard (DES) [562] is a block cipher that
encrypts 64 bit message blocks using a symmetric secret key of size 56 bit.
Triple DES (3DES) is an extension for a key size of 168 bit, essentially performing
three DES encryptions sequentially using three 64 bit substrings of the 3DES key
as DES keys. Both DES and 3DES are deprecated [54], but they are still part of
many common crypto libraries like mbedTLS [7] and OpenSSL [55].

Implementation of DES and 3DES might be susceptible to cache side-channel
attacks. DES keys can, e.g., be recovered based on the cache misses encountered
by implementations that use eight lookup tables (S-Boxes) for substitutions [67].
Such an implementation with eight lookup tables is, e.g., available in mbedTLS.

Camellia. Camellia [4] is a block cipher that encrypts 128 bit message blocks
with symmetric secret 128, 192, or 256 bit keys in transformation rounds. Like AES
and DES, Camellia uses round keys in each transformation round.

There are multiple techniques for cache attacks on implementations of Camellia
that use lookup tables (S-Boxes). The Camellia secret key can, e.g., be recovered
from an implementation with four tables using cache-access patterns obtained
from power measurements [59]. Access-driven cache attacks can also be used
to recover keys from a table-based Camellia implementation [73]. Table-based
implementations are available, e.g., in OpenSSL [55] and mbedTLS [7].

2.2 Boolean Circuits for Secure Computation
Secure computation techniques make it possible to involve untrusted parties in

the processing of private data. More specifically, homomorphic encryption allows
one to outsource computation on private data to untrusted third parties [27].

In contrast, in secure two- or multi-party computation, two or more mutually
distrusting parties jointly and interactively compute on private data [T1[28].

Secure computation techniques obliviously compute publicly known functions
expressed as combinatorial Boolean and/or arithmetic circuits. Boolean circuits
are composed of AND and XOR gates, whereas arithmetic circuits consist of
addition and multiplication gates. Both types of circuits are functionally complete
when having access to constants, i.e., they can represent arbitrary computable
functions. A Turing machine 7" with input length n can be expressed as a circuit of
size O(t(T, n)), where t(T, n) denotes the running time of T" on input length n [30].

As noted in [26], the evaluation of Boolean and arithmetic circuits as done
in secure computation is inherently secure against a wide range of software
side-channel attacks. This is due to the fact that every possible branch of the
function represented by such a circuit is executed in parallel and that the memory
accesses performed by such circuit implementations do not depend on input data.

Unfortunately, designing circuits from high-level function descriptions is
complex and requires tool support. Moreover, for secure computation, expert
knowledge about the underlying protocols is required to achieve efficient results.

In hardware design, there exist academic as well as commercial high-level
synthesis tools that automatically transpile, e.g., ANSI C or SystemC code to
hardware description languages like Verilog or VHDL [51]. Via established logic
synthesis tools (e.g., [62]) that output FPGA configurations or ASIC designs, it
is furthermore possible to go to hardware level. Logic synthesis tools have also
been adapted for secure computation by providing customized ASIC cell libraries
and optimization parameters as well as algorithms [2TI6TI63I64].

Being much more convenient for regular software developers, a line of research
has focused on creating optimized compilers that directly transform ANSI C
programs to basic (Boolean) circuit representations that can easily be evaluated in
software, e.g., by secure computation frameworks like ABY [22]. State-of-the-art
in this domain is HyCC [15], the successor of the CBMC-GC compiler [32], which
in turn is based on the bounded model checker CBMC [17].

HyCC provides optimizations like automated parallelization of concurrent
code, logic minimization, loop unrolling, and minimization of the resulting circuits.
However, in this work we target only size-optimized Boolean circuits and hence
do not use the computationally expensive optimization steps of HyCC.

2.3 Program-Analysis Approach

To quantify the leakage of x86 binaries through cache side channels, we use a
combination of information theory and abstract interpretation. This approach was
first established in [38], later extended and then implemented in the tool CacheAu-
dit [25], of which multiple variants have been developed (e.g., [1312446]). We
build on CacheAudit and extend it with support for additional language features
where necessary. Below, we describe the underlying approach in more detail.
We model a cache side channel as a deterministic, discrete, memoryless
channel from an input alphabet (random variable X) to an output alphabet (ran-
dom variable Obs). The min-entropy Ho.(X) = —log, max; p(z;) of X cap-

tures the uncertainty an attacker has about the secret input if the probabil-
ity for each input x; is p(z;) [60]. The conditional min-entropy Heo(X|Obs) =

Ob obs;|x;i)-p(x;
—logy Z;lelp(obsj) -max; %

tainty after observing the channel output, where output obs; occurs for secret x;
with probability p(obs;|z;) and occurs overall with probability p(obs;). The in-
formation that an output reveals about the input is modeled by the min-entropy
leakage Hoo(X) — Hoo (X |Obs), which is upper bounded by log, |Obs| bit [3960].

Let X be the set of possible secret inputs (secret key and message) and Obs
be the possible observations of a cache-side-channel attacker. We compute cache
side-channel leakage bounds as log, |ObsP|, where ObsP is an overapproximation
of the reachable observations Obs. The overapproximation makes the analysis
feasible and is done using abstract interpretation [I9]. More concretely, we
overapproximate the actual possible execution states D by more abstract execution
states D and the actual semantics updp : D x Z — D of instruction set Z by an
abstract semantics updsz : D x I — D. We then compute the reachable abstract

observations according to updz and count the number of actual observations
P

captures the attacker’s remaining uncer-

they represent. We take the logarithm to obtain the leakage bound log, |Obs
We consider four models of cache side-channel attackers, i.e., four variants
of Obs: (1) Attackers under the model acc can deduce which memory entries
are cached in a shared cache after the victim program is executed, (2) attackers
under accd can deduce the number of memory entries the victim loaded into each
cache set of such a shared cache, (3) attackers under trace can deduce the trace of
cache hits and cache misses that occurred during the victim-program execution,
and (4) attackers under time can deduce the execution time of a victim-program
execution (modeled by fixed durations for cache hits, misses, and other steps).

3 The RiCaSi Toolchain

The goal of RiCaSi is to allow developers to obtain x86 binaries from regular and
potentially vulnerable C code that come with quantitative security guarantees
with respect to cache side channels. The high-level overview of our toolchain and
its workflow is depicted in Figure

First, the C code provided by the user (e.g., a block-cipher implementation)
is compiled to an x86 binary (e.g., with GCC) and analyzed with our extended
version of CacheAudit (cf. §3.5). If the resulting upper bound on the cache-side-
channel leakage of the binary is below an acceptable threshold, the binary can
be used securely and RiCaSi terminates.

In case the threshold leakage is exceeded, RiCaSi compiles the C code into a
circuit representation, which in turn is compiled into an x86 binary for further
analysis. For this, we first preprocess the C code to substitute constructions
currently not supported by existing circuit compilers (cf. , e.g., with respect
to memory management and the passing of parameters.

The resulting C code is then compiled with the state-of-the-art circuit com-
piler HyCC [15] (cf. §3.3). For transforming the resulting circuit representation
back to C code, we implement our own tool in Python (cf. .

Leakage <
Threshold?

Side-Channel
—> Corr(\;p(i:l(a?tion > Analysis with
CacheAudit [25]

Y

C Code
Preprocessing

l BinD—
C to Circuit
Compilation Failure
with HyCC [15]

!

Side-Channel
> Analysis with
CacheAudit [25]

Circuit GCC
—> . .
to C Code Compilation

Leakage <
Threshold?

Fig. 1: Overview of our RiCaSi toolchain and workflow.

After compilation to an x86 binary, we perform a second round of analysis
with our extension of CacheAudit (cf. §3.5). Here, the expected output is an
improved security guarantee in the form of an upper leakage bound that lies
below the acceptable threshold or is even equal to 0bit leakage.

In the following, we detail the individual steps of the RiCaSi toolchain at
the running example of a lookup-table-based implementation of AES encryption
from OpenSSL (cf. Listing. The original implementation is vulnerable to cache
side-channel attacks because it accesses lookup tables (e.g., table Te0 as shown
in Listing [1)) at round-key dependent indices.

static const u32 Te0[256] = {0xc66363a5U, ...}; // lookup table
void AES_encrypt(const unsigned char xin, ...) {...

s0 = GETU32(in) ~ rk[0]; ... // initial round

t0 = TeO[s0 >> 24] ~ ...; // secret—dependent memory access

Listing 1: Excerpt of OpenSSL AES encryption.

3.1 [Initial Side-Channel Analysis

In the first step of RiCaSi, we apply automatic program analysis to determine
whether the input implementation can be used as is or whether any hardening
against cache side channels is required. To this end, we derive quantitative security
guarantees for the x86 binary corresponding to the given implementation. More
concretely, we compute upper bounds on the cache side-channel leakage of the
binary and compare them to the threshold for the desired level of security. If non-
zero bounds are not acceptable, the threshold can be set to zero. Technically, we
use a combination of information theory and abstract interpretation, implemented
in the tool CacheAudit. The tool takes an x86 binary and outputs bounds on the
min-entropy leakage to the attacker models ace, aced, trace and time (cf. §.

If the resulting leakage bounds lie below the desired leakage threshold, no
hardening is required and unnecessary overhead can be avoided. If the leakage
bounds are too high, we proceed with the preprocessing for circuit compilation.

Listing [2] shows the leakage bounds for OpenSSL AES from Listing [1} The
bounds guarantee, for instance, that at most 73.83 bit are leaked to an attacker
under the model acc (cf. Line 2 in Listing [2)) and at most 70.34bit are leaked
to an attacker under accd (cf. Line 3). These bounds are rather weak security
guarantees and would likely exceed the acceptable threshold leakage for most
applications such that further steps of RiCaSi would be applied.

Number of valid cache config. (shared memory): ... (73.820808 bits)
Number of valid cache config. (disj. memory): ... (70.339850 bits)
traces: ..., 280.000000 bits

times: ..., 8.134426 bits

Analysis took 18 seconds.

Listing 2: Excerpt of analysis results for OpenSSL AES.

3.2 C Code Preprocessing

The “C-to-circuit” compilation as provided by HyCC [15] comes with several
limitations regarding the processable source code. To avoid compilation issues,
we manually apply several preprocessing steps to make existing implementations
compatible. Although these steps are targeted towards our case studies (cf. Sec-
tion , they might be of independent interest and worth to fully automate, as
they can be applied to make the regular usage of HyCC more convenient.

1. Especially when compiling code that depends on an extensive library, it is best
to first bundle all required methods in a single file. If possible, all method calls
are replaced by inlining the required code into a method named mpc_main.
Otherwise, debugging compilation errors becomes infeasible.

2. Global and static variables are not supported by HyCC. They must instead
be declared in the main method (cf. the declaration of TeO in Listing [3)).

3. Memory management via malloc and calloc is not supported by HyCC.
Often, it is sufficient to declare arrays with fixed size instead. In many cases,
it is also possible to simply remove such statements as the compiler can
determine array sizes from later assignments. However, dealing with such
memory management issues was not required for any of our case studies.
HyCC also does not support passing arrays or pointers in method headers.
This can be circumvented by splitting arrays into single variables, which are
passed instead (cf. passing the plaintext data in01 in Listing [3)).

The preprocessed OpenSSL AES encryption code is shown in Listing

int mpc_main(unsigned char in01, ...) ... // inputs split in bytes
const unsigned char in[16] = {in0l1, ...}; // reconstruct inputs
const u32 Te0[256] = {0xc66363a5U, ...}; // table declaration

Listing 3: Excerpt of preprocessed OpenSSL AES encryption.

3.3 C Code to Circuit Compilation

The compilation of the preprocessed C code to a circuit description happens
through a straightforward application of HyCC [I5]. For the compilation, the C
code is first transformed into a “goto code” intermediate representation, loops
are unrolled, variables are split into single bits, and operations over those bits
are expressed as Boolean functions [32]. As briefly described in HyCC also
performs several optimizations like circuit minimization.

However, in comparison to the regular usage of HyCC, several of the most
computationally expensive steps can be skipped. This is because here we target
only the creation of size-optimized Boolean circuits and do not consider depth-
optimized Boolean or arithmetic circuits (which are beneficial for some interactive
secure computation protocols [28§]).

Therefore, for our purpose, HyCC does not need to decompose the code
into separate modules and compile each module into multiple different types
of circuits. We can also skip the final step where HyCC tries to heuristically
optimize the total cost for secure computation protocols by finding the best
possible combination of different types of circuits and protocols.

3.4 Circuit to Binary Compilation

In the following, we describe how the HyCC circuit output is translated into C
code and further compiled into an x86 binary.

The circuit output produced by HyCC is by default in a binary format to
be processed by the ABY MPC framework [22] via a specialized adapter. To
facilitate further processing without ABY, we use a HyCC export functionality for
conversion into the human-readable and widely used BRISTOL circuit format [66].
In the BRISTOL format, every line of the circuit description file declares the
type of one gate as well as the number and the identifiers of the gate’s input and
output wires. The supported gate types are AND, XOR, and INV (inversion).
The header of the circuit description specifies the total number of gates, the total
number of wires, and circuit input as well as output wires. The HyCC output in
the BRISTOL format for OpenSSL AES is shown in Listing

490425 490809

384 0 160
2 1 121 377 385 XOR // XOR gate in BRISTOL representation
1 1 385 386 INV // INV gate in BRISTOL representation

2 1 384 386 387 AND // AND gate in BRISTOL representation

Listing 4: HyCC circuit for OpenSSL AES encryption in BRISTOL format.

We implemented a converter tool in Python to translate BRISTOL circuit
description files into C source code. The converter is controlled via a configuration
file that, besides the circuit name and file, specifies input and output types, and
which external libraries (e.g., stdio.h) should be included.

The converter first declares a variable for each wire and disassembles the
specified inputs into the respective circuit input wires. It then iterates through
each line of the circuit description and inserts the respective C instruction for
performing the specified gate operation (e.g., & for AND gates) on the variables
corresponding to the gate input and output wires. This is possible because the
gates in the BRISTOL circuit format are ordered topologically, i.e., all input wires
for each gate have been assigned before. Finally, the circuit output is assembled
in the configured type from the circuit output wires. The converter output for
our OpenSSL AES encryption example is shown in Listing [5

)

int openssl_aes_enc (int in0O1,

unsigned char w0, ..., w490808;
int inbits01[8] = split(in01);
w0 = inbits01 [0];
w385 = w121 ~ w377; // C code for gate 2 1 121 377 385 XOR
w386 = !w385; // C code for gate 1 1 385 386 INV
= w384 & w386; // C code for gate 2 1 384 386 387 AND

w387

Listing 5: Excerpt of OpenSSL AES encryption in circuit-style C.

The resulting C code file can then be compiled into an x86 binary using,
for example, the GCC compiler. It is also possible to integrate the produced C
code with another application before compilation, or to modify the code, e.g., to
include further input and output processing.

3.5 Final Side-Channel Analysis

To ensure that no potential for cache side-channel leakage remains in the final
circuit binary, we perform an additional program analysis step. To this end,
we apply a variant of the tool CacheAudit that we extended for the purpose
of analyzing circuit binaries. Our variant of CacheAudit augments the prior
version in two directions: support for large control-flow graphs and support for
additional x86 opcodes.

Circuit-based binaries are significantly larger than regular binaries because
all individual gates are encoded in the assembly code. Since CacheAudit was not
intended for the analysis of binaries with large basic blocks, its parser quickly
runs into overflows when trying to build a control-flow graph for the studied
circuit-based binaries. By rewriting the corresponding parts of the CacheAudit
implementation in a tail-recursive style, we now avoid this issue.

Furthermore, circuit-based binaries use x86 opcodes that did not occur in
the binaries that have been analyzed with CacheAudit before. In particular, the
comparison instructions with opcodes 0xA8 and 0xF7/0 occur in the binaries.
We added support for both instructions to CacheAudit.

Our resulting variant of CacheAudit can be successfully applied to all circuit-
based binaries in our evaluation and is of independent interest.

Listing [6] shows an excerpt of the analysis results for the x86 binary cor-
responding to the circuit-compiled variant of OpenSSL AES from Listing [5
In this example, the resulting leakage bounds are 0bit across all four attacker
models (cf. Line 2 in Listing@ for acc, Line 3 for accd, Line 4 for trace and Line 5
for time). That is, the circuit-compiled binary does not leak secret information
through cache side channels to attackers under any of these attacker models.

Number of valid cache config. (shared memory): 1, (0.000000 bits)
Number of valid cache config. (disj. memory): 1, (0.000000 bits)
traces: 1, 0.000000 bits

times: 1.000000, 0.000000 bits

Analysis took 185392 seconds.

Listing 6: Excerpt of analysis results for circuit-compiled OpenSSL AES.

Note that circuit compilation does not inevitably lead to 0 bit leakage bounds.
Since side channels are vulnerabilities at the level of implementation details, it is
crucial to ensure that the hardening is effective in all details. In an intermediate
version of RiCaSi we had accidentally introduced potential side-channel leakage
in the circuit-to-C compilation step: our initialization of the circuit inputs was not
constant-time. With the final program-analysis step of RiCaSi, we detected the
mistake due to unexpectedly high leakage bounds for the generated binary. We
then adapted our circuit-to-C compilation tool accordingly. As shown in Listing[6]
the hardening with RiCaSi is now effective in all details, leading to 0bit leakage
bounds for the resulting binary.

4 Evaluation of Cache-Side-Channel Security

We evaluate the applicability of RiCaSi and the benefit it provides in terms of
cache side-channel security guarantees in two dimensions.

We first consider a range of lookup-table-based AES implementations: an
implementation from OpenSSL [55] that uses four lookup tables of size 1kB, an
implementation from mbedTLS [7] (a library used, e.g., by cURL [65] and Open-
VPN [56]) that uses four 1 kB tables and a 0.25 kB S-Box, an alternative implemen-
tation with lookup tables and an S-Box from Nettle [49], and one implementation
from the library LibTomCrypt [41] that uses eight 1kB lookup tables.

In the second step, we broaden the evaluation to implementations of other
block ciphers. We consider implementations of three additional block ciphers
from the library mbedTLS: Camellia, DES, and 3DES.

4.1 RiCaSi for AES Implementations

We analyze the sequence of the key-generation and encryption functions from the
respective AES implementations, applied to a 256 bit key and 128 bit plaintext.
We configure mbedTLS without x86 VIA PadLock instructions because we are
interested only in the software AES implementation. We configure LibTomCrypt

10

Library Version Configuration Analyzed Functions

OpenSSL 1.1.1d default AES_set_encrypt_key,
AES_encrypt
mbedTLS 2.16.5 removed mbedtls_aes_init,

MBEDTLS_PADLOCK_C mbedtls_aes_setkey_enc,
mbedtls_aes_encrypt,
mbedtls_aes_free

Nettle 3.5 default aes256_set_encrypt_key,
aes256_encrypt
LibTomCrypt 1.18.2 ARGTYPE rijndael_enc_setup,

rijndael_enc_ecb_encrypt

Table 1: AES implementations inspected in our case study.

to omit assert statements with indirect jumps to make the computation of security
guarantees with state-of-the-art program analysis feasible. The details on the
configurations that we used are summarized in Table

To compute guarantees for the cache side-channel security of these implemen-
tations before and after circuit compilation, we use our extension of the program
analysis tool CacheAudit as described in

Our analysis with CacheAudit and the resulting security guarantees focus on
one single level of cache. This is a common simplification of modern multi-level
cache hierarchies that is frequently applied in cache side-channel quantifica-
tion [25/24/461T3]. In our analysis, we consider an 8-way set associative cache
with 64 cache sets and a line size of 64 Bytes with the PLRU cache line re-
placement strategy. This reflects, e.g., the L1 data caches of the Intel Skylake
architecture [33, Table 2-4],[I] and the AMD Zen2 architecture [3].

As a baseline for our evaluation, we compute upper bounds on the cache
side-channel leakage of the original, vulnerable AES implementations. We then
harden the implementations using RiCaSi. In the final analysis step of RiCaSi,
CacheAudit is applied again to compute cache-side-channel leakage bounds for
the hardened implementations. In both cases, we consider the 32 bit x86 binaries
obtained from the C implementations using gcc version 5.4.0.

Baseline Results. Our baseline analysis results across the AES implemen-
tations and side-channel attacker models described in §3.5] are shown on the left
side of Table [2] We round the leakage bounds to two decimal places.

Ciher Attacker Model Cipher Attacker Model

P acc accd trace time p acc accd trace time
OpenSSL 73.82 70.34 280.00 8.13 OpenSSL 0.00 0.00 0.00 0.00
mbedTLS 88.09 81.55 287.00 8.17 mbedTLS 0.00 0.00 0.00 0.00
Nettle 85.93 78.55 299.00 8.23 Nettle 0.00 0.00 0.00 0.00

LibTomCrypt 204.03 143.43 274.00 8.10 LibTomCrypt 0.00 0.00 0.00 0.00
Table 2: AES leakage bounds in [bit] before (left) and after (right) RiCaSi[I

! For homogeneity across tables, we use the full display format also for all-zero tables.

11

Cipher Key Length Plaintext Length Analyzed Functions

Camellia 256 bit 128 bit mbedtls_camellia_init,
mbedtls_camellia_setkey_enc,
mbedtls_camellia_crypt_ecb,
mbedtls_camellia free

DES 64 bit 64 bit mbedtls_des_init,
mbedtls_des_setkey_enc,
mbedtls_des_crypt_ecb,
mbedtls_des _free

3DES 128 bit 64 bit mbedtls_des3_init,
mbedtls_des3_set2key_enc,
mbedtls_des3_crypt_ecb,
mbedtls des3 free

Table 3: DES, 3DES and Camellia implementation inspected in our case study.

CacheAudit yields rather high leakage bounds, between 70.34 bit and 299.00 bit
for the attacker models acc, accd and trace across all libraries. For the attacker
model time, the bounds are lower and lie between 8.10 bit and 8.23 bit. For in-
stance, the time leakage bound for OpenSSL AES is 8.13 bit. This means that one
execution of this AES binary leaks at most 2.12% of the 384 secret bits (256 bit
key and 128 bit plaintext) to an attacker under the model time.

The high leakage bounds for acc, aced and trace are rather weak security
guarantees. That is, for the attacker models acc, accd and trace, the level of
security on which we can rely is rather low. Even for the attacker model time,
we do not obtain guarantees for the complete absence of leakage.

The high bounds are not surprising because all analyzed binaries belong to
lookup-table-based implementations that use secret-dependent memory accesses.
Next, we evaluate how effective RiCaSi is in hardening the implementations.

Results for RiCaSi. The leakage bounds for the circuit-based binaries
produced by RiCaSi are shown on the right-hand side of Table [2| Note that the
upper bounds on the leakage are 0bit across all implementations and attacker
models. That is, no information is leaked to attackers under the four models.

While the 0bit leakage bounds might not be surprising at first sight, recall
that they play a central role in RiCaSi. If any detail of the circuit compilation
and translation failed, as in our prior implementation (cf. , we would spot
this here. With 0bit bounds, we can be sure that the hardening with RiCaSi is
effective in all implementation details.

4.2 RiCaSi for Block Ciphers from mbedTLS

For each of the three block ciphers Camellia, DES, and 3DES, we analyze the
respective sequence of functions to initialize the data structures, compute the key
schedule, perform the encryption and free the data structures from mbedTLS
version 2.16.5. The details, including key and plaintext lengths, are described
in Table [3] We use the same CacheAudit variant and configuration as in
Baseline Results. The leakage bounds for the original block-cipher imple-
mentations from mbedTLS (including mbedTLS AES for comparison) are shown

12

Attacker Model Attacker Model

Cipher Cipher

acc accd trace time acc accd trace time
AES 88.09 81.55 287.00 8.17 AES 0.00 0.00 0.00 0.00
Camellia 28.50 25.75 242.00 7.92 Camellia 0.00 0.00 0.00 0.00
DES 38.40 37.75 141.00 7.16 DES 0.00 0.00 0.00 0.00
3DES 52.20 48.34 416.00 8.70 3DES 0.00 0.00 0.00 0.00

Table 4: mbedTLS leakage bounds in [bit] before (left) and after (right) RiCaSi.

on the left side of Table [4 The acc and accd leakage bounds for Camellia, DES,
and 3DES are lower than the leakage bounds for AES, but still rather high com-
pared to the respective sizes of the secret key and message (384 bit for Camellia,
128 bit for DES, and 192 bit for 3DES). For the attacker models trace and time,
the leakage bounds for 3DES are even higher than those for AES. This might be
due to an accumulation of leakage across the DES executions in 3DES.

Again, the high leakage bounds are not surprising given the known cache-side-
channel attacks on such implementations described in Next, we apply RiCaSi
to harden the implementations against such attacks. The resulting leakage bounds
are shown on the right-hand side of Table [4]

Results for RiCaSi. For all block-cipher implementations hardened with Ri-
CaSi, we are able to derive guarantees for 0 bit leakage for all four cache side-
channel attacker models. That is, RiCaSi effectively hardened the implementations
against cache side-channel attackers under these models.

Overall, RiCaSi hence supports the hardening not only of AES implementa-
tions but also of a broader range of block-cipher implementations. In all cases
that we considered in our evaluation, the effectiveness of the hardening was
automatically verifiable using the program analysis of CacheAudit.

5 Ewvaluation of Overhead

Compiling applications into side-channel resistant executables is a one time cost
that is quickly amortized over time. However, RiCaSi generates repeated overhead
in two aspects, which we evaluate in detail: First, we study how much the size
of the circuit-based binaries increases compared to regular compilation results.
Then, we evaluate how much the run-time of the side-channel resistant binaries
increases compared to the vulnerable counterparts.

5.1 Binary Sizes

In Table [5] we compare the binary sizes of the regular block-cipher implementa-
tions to the output produced by RiCaSi. While storage costs nowadays are almost
negligible at the given scale, considering the overhead in terms of binary sizes is
especially necessary to estimate the additional costs when widely distributing
software over the Internet, or for embedded devices.

The results in Table [5] strongly vary among the considered block ciphers. The
binary sizes for DES and 3DES, e.g., stay well below 5 MB and have less than

13

Cipher ‘Library ‘Original (in KB)‘RiCaSi (in KB)‘Overhead

AES OpenSSL 37.72 23,624.18| 626.30x
Nettle 29.81 23,573.93| 790.81x
LibTomCrypt 56.70 23,623.09| 416.63x
mbedTLS 57.32 23,581.20| 411.40x

Camellia|mbedTLS 890.56 11,923.80| 13.39x

DES mbedTLS 891.80 1,408.01 1.58x

3DES |mbedTLS 891.84 3,497.00 3.92x

Table 5: Comparison of binary sizes.

factor 5x blow-up. However, binary sizes for AES increase up to about 24 MB,
which corresponds to a blow-up of two orders of magnitude. Therefore, we
recommend to use RiCaSi mainly on small, highly security critical code sections.

Note that the compilation setup in our case studies was not tailored to
optimize the binary sizes. All binaries include debug information. Moreover, while
the original AES binaries were linked dynamically, we used static linking for all
other binaries to make them self-contained for the program analysis. By dropping
dispensable information from the binaries, the sizes could be reduced if necessary.

5.2 Run-Times

We evaluate the run-times of the executables of various block ciphers gener-
ated by RiCaSi and compare the resulting overhead to the regular vulnerable
executables in Figure [2] All binaries are executed on one logical core of an In-
tel Core 19-7960X CPU clocked at 2.8 GHz (with up to 4.2 GHz turbo boost).
The stated run-times are averages over 10 executions.

In Figure [2} we observe about two (DES, 3DES) to three (Camellia, all AES
implementations) orders of magnitude overhead when executing the binaries
produced by RiCaSi. For encrypting large amounts of data (i.e., in the order of
gigabytes) or applications with strict real-time requirements (e.g., Bitlocker), this
overhead quickly becomes impractical. However, for processing small or even large

2 T T T TTTIT T TTTTIT T T LILBLILLLAL LILBLILLLAL T T T TTTIT T T UBLBLALLL UBLBLRALLL UL
107 [{ — camellia (orig.) N [| — LibTomCrypt m
-
— DES (orig.) e — mbedTLS P
- . -
— 3DE i - - — Nettle -
10° H 3DES (orig.) o H .- i
- - Camellia (RiCaSi) | -~ _-7 .~ — OpenSSL -
- - - - - . . -
- - DES (RiCaSi) - — - RiCaSi 3
-7 .
10~2 | - - 3DES (RiCasi) .-

1074

Run-Time in Seconds

Y1 1 S 1 \\\\\\\\7 7\ 1 T Y AV \HHH‘7
10° 10" 10° 10* 10 10° 10° 10" 10° 10® 10" 10°
Number of Blocks Number of Blocks

Fig. 2: Comparison of run-times for encrypting an increasing number of blocks with
different ciphers. Left: Camellia, DES, 3DES (mbedTLS). Right: different AES
implementations; the differences in the respective RiCaSi versions are negligible.

14

amounts of data in high-security contexts without strict real-time requirements,
the binaries generated by RiCaSi deliver practical performance.

6 Related Work

6.1 Secure Computation Techniques for Side-Channel Mitigation

So-called one-time programs (OTPs) are studied in [30], which are programs
that can be evaluated only on a single input chosen at run-time. The proposed
construction is based on a combination of tamper-resistant hardware with Yao’s
garbling scheme for Boolean circuits [71]. In this scheme, the gate tables are
encrypted and the corresponding keys required for decryption are carried by the
circuit wires instead of single bits. Importantly, the nature of the garbled circuit
evaluation prevents all potential side-channel leakage.

A variant of this idea was later implemented on FPGAs by [34]. Their
performance evaluation observes an overhead of about factor 106 x comparing
one unprotected AES evaluation in hardware to a provably side-channel resistant
hardware-accelerated OTP evaluation. Despite this significant overhead, the
authors argue their solution might be reasonable for high-security applications.

In contrast to these works, we provide a generic compiler toolchain for creating
and evaluating Boolean (non-garbled) circuits in software. Our performance
evaluation shows an overhead of only about factor 103 x when comparing regular
vulnerable implementations of various block ciphers to circuit-based executables
with 0 bit upper leakage bounds with respect to cache side channels.

In [20], Felsen et al. use circuit representations to mitigate side-channel
attacks for programs shielded with Intel Software Guard Extensions (SGX) [18].
Intel SGX is a trusted execution environment available in many Intel CPUs that
allows one to run so-called enclaves in isolation from all other software. However,
Intel considers software side channels out of scope for the attacker model, which
resulted in many attacks showing the vulnerability especially of enclaves running
cryptographic code (e.g., [69]). As a solution, Felsen et al. created an enclave
that evaluates Boolean circuits on private inputs provided to the enclave via
secure channels [26]. They claim resistance against timing and page-table- as
well as cache-based software side channels, but do not provide any analyses for
confirmation. Also, they do not provide an integrated solution for obtaining the
circuit representations required for their circuit evaluator.

In contrast to [26], we provide an automated way to generate side-channel
resistant executables with our toolchain RiCaSi. Most importantly, our approach
is backed by formal analyses showing upper bounds of 0 bit on the cache side-
channel leakage for various implementations of block ciphers. In the future,
RiCaSi could be extended to produce side-channel resistant Intel SGX enclaves.

The concept of Oblivious RAM (ORAM) [29] was introduced to prevent that
code can be reverse-engineered from observations about the memory accesses
performed by the code. The key idea is to replace each memory access with a
sequence of memory accesses that conceals the address of the original memory

15

access. That is, ORAM prevents information leakage via memory accesses without
removing these accesses completely. RiCaSi follows the alternative approach of
eliminating the memory accesses through circuit compilation.

6.2 Systematic Detection and Assessment of Side-Channel Leakage

Systematic approaches to side-channel security range from qualitative approaches,
like type-based techniques [8I5087I23], to quantitative approaches, like abstraction-
based techniques [38I25/42] or experiment-based techniques [T6l45/44]. In the
following, we provide an overview of existing qualitative and quantitative ap-
proaches with a focus on cache side channels.

Qualitative approaches to cache side-channel detection include, e.g., DATA
[70] and CacheD [68]. Both tools check for cache side channels in execution
traces. They are intended for debugging and do not provide security guarantees.
The tool CaSym [14] soundly verifies LLVM code against cache side channels.
While DATA uses statistical methods, CacheD and CaSym use symbolic execution.

Quantitative approaches to cache side-channel assessment include multiple
variants of the tool CacheAduit [25]. CacheAudit computes upper bounds on the
cache side-channel leakage of x86 binaries using a combination of information
theory and abstract interpretation. It has been successfully extended and applied
for the analysis of multiple cryptographic implementations, including AES imple-
mentations [46], modular exponentiation [24], and lattice-based cryptography [13].
Our work is based on CacheAudit and extends the tool for our purposes with
better scalability and additional x86 language coverage.

6.3 Analysis of Side-Channel Leakage in Circuit Implementations

To the best of our knowledge, the closest to our work in combining circuit
compilation with side-channel security guarantees are the Usuba compiler [48]
and its extension to Tornado [9]. Both, Usuba and Tornado take as input a circuit
specification in the Usuba specification language.

Usuba compiles the specification to C code and introduces optimizations like
bitslicing. Bitslicing [12] optimizes the performance of circuit-based software
implementations by parallelization. To this end, the variables that model the
circuit wires are used to store multiple bits instead of just one bit. Applying
bitwise operations to these variables will then model the application of the
corresponding gate to all bits in parallel.

Tornado augments Usuba and returns an optimized circuit binary that satisfies
security guarantees with respect to the register-probing adversary model. That
is, the resulting circuit is secure against side-channel adversaries that can probe
intermediate values of registers during the execution of the software circuit. To
this end, Tornado extends Usuba with support for the masking countermeasure.
Masking mitigates side-channel leakage by splitting the secret value into shares
that are only meaningful in combination. Moreover, Tornado combines the
extended Usuba with the tool TightProve [I0] to show that the resulting masked
implementation is secure with respect to the register-probing model.

16

That is, both Usuba and Tornado work at the level of circuits. Both optimize
the circuits and Tornado also provides security guarantees. Neither of the tools
alms at supporting the development of circuits from high-level specifications.

Overall, Tornado and Usuba are complementary to RiCaSi. Tornado and
Usuba focus on optimizing circuits, e.g., by bitslicing. RiCaSi currently uses only
one bit of each variable, i.e., does not apply bitslicing. Tornado and Usuba do not
support the generation of a circuit specification from a high-level implementation.
RiCaSi closes this gap and converts high-level C implementations into circuit-
based implementations that are reliably secure against cache side-channel attacks.

7 Conclusion

In this paper, we presented the toolchain RiCaSi, an integrated solution for
hardening regular C implementations against cache side channels by transforming
them into circuit-based x86 binaries.

RiCaSi applies program analysis to quantify the threat of cache side-channel
leakage in a given implementation. Based on the analysis results, the implementa-
tion can be hardened selectively and unnecessary costs are avoided. With RiCaSi,
we successfully transformed multiple vulnerable crypto implementations (AES
from OpenSSL, mbedTLS, Nettle, and LibTomCrypt; Camellia, DES, and 3DES
from mbedTLS) into circuit-based binaries with zero-leakage guarantees against
four cache attacker models. For these binaries, we observed overhead of up to
three orders of magnitude, which is acceptable for critical applications without
hard real-time requirements. Overall, RiCaSi performs a selective, effective and
affordable hardening of regular C implementations against cache side channels.

In the future, integrating steps for circuit optimization into the toolchain,
e.g., the use of vectorized instructions or automated bitslicing as in [48], will be a
promising direction to greatly reduce overhead while maintaining the applicability
to high-level C implementations and the reliable security guarantees.

Acknowledgments. We thank the anonymous reviewers for their helpful
comments. This project was co-funded by the Deutsche Forschungsgemein-
schaft (DFG) — SFB 1119 CROSSING/236615297 and GRK 2050 Privacy &
Trust /251805230, and by the German Federal Ministry of Education and Re-
search and the Hessian Ministry of Higher Education, Research, Science and
the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE. It has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850990 PSOTI).

References

1. Abel, A., Reineke, J.: nanoBench: A low-overhead tool for running microbenchmarks
on x86 systems. CoRR abs/1911.03282 (2019)

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Aciigmez, O., Kog, Q.K.: Trace-driven cache attacks on AES (short paper). In:

ICICS (2006)

. Advanced Micro Devices: Software optimization guide for AMD family 17h models

30h and greater processors. Publication number: 56305, Revision: 3.02 (2020)
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Specification of Camellia — a 128-bit block cipher, version 2.0 (2001)
Apecechea, G.I., Eisenbarth, T., Sunar, B.: S$a: A shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S&P (2015)
Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast,
cross-vim attack on AES. In: RAID (2014)

ARM Limited: mbedTLS (Version 2.16.5). https://tls.mbed.org/download/
start/mbedtls-2.16.5-apache.tgz| (2020)

Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional
branching instructions. In: QAPL (2006)

Belaid, S., Dagand, P., Mercadier, D., Rivain, M., Wintersdorff, R.: Tornado:
Automatic generation of probing-secure masked bitsliced implementations. In:
EUROCRYPT (2020)

Belaid, S., Goudarzi, D., Rivain, M.: Tight private circuits: Achieving probing
security with the least refreshing. In: ASTACRYPT (2018)

Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., University of Illinois at
Chicago (2005)

Biham, E.: A fast new DES implementation in software. In: FSE (1997)

Bindel, N., Buchmann, J.A., Kramer, J., Mantel, H., Schickel, J., Weber, A.:
Bounding the cache-side-channel leakage of lattice-based signature schemes using
program semantics. In: FPS (2017)

Brotzman, R., Liu, S., Zhang, D., Tan, G., Kandemir, M.T.: Casym: Cache aware
symbolic execution for side channel detection and mitigation. In: S&P (2019)
Biischer, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC:
Compilation of hybrid protocols for practical secure computation. In: CCS (2018)
Chothia, T., Kawamoto, Y., Novakovic, C.: A tool for estimating information
leakage. In: CAV (2013)

Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS (2004)

Costan, V., Devadas, S.: Intel SGX explained. ePrint 2016/86 (2016)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

Daemen, J., Rijmen, V.: AES submission document on Rijndael, Version 2 (1999)
Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: CCS
(2015)

Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

Dewald, F., Mantel, H., Weber, A.: AVR processors as a platform for language-based
security. In: ESORICS (2017)

Doychev, G., Kopf, B.: Rigorous analysis of software countermeasures against cache
attacks. In: PLDI (2017)

Doychev, G., Kopf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1) (2015)
Felsen, S., Kiss, A Schneider, T., Weinert, C.: Secure and private function evalua-
tion with Intel SGX. In: CCSW (2019)

18

https://tls.mbed.org/download/start/mbedtls-2.16.5-apache.tgz
https://tls.mbed.org/download/start/mbedtls-2.16.5-apache.tgz

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)
Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431-473 (1996)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: CRYPTO
(2008)

Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: S&P (2011)

Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: CCS (2012)

Intel Corporation: Intel® 64 and IA-32 architectures optimization reference manual.
Order Number: 248966-032 (2016)

Jarvinen, K., Kolesnikov, V., Sadeghi, A., Schneider, T.: Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs.
In: CHES (2010)

Kisper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: CHES
(2009)

Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: System-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security (2012)
Kopf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. IJIS 6(2-3) (2007)

Kopf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-channels.
In: CAV (2012)

Kopf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: CSF (2010)

Kreuter, B., Shelat, A., Mood, B., Butler, K.R.B.: PCF: A portable circuit format
for scalable two-party secure computation. In: USENIX Security (2013)

libtom projects: LibTomCrypt (Version 1.18.2). https://github.com/libtom/
libtomcrypt/releases/tag/v1.18.2 (2018)

Malacaria, P., Khouzani, M., Pasareanu, C.S., Phan, Q., Luckow, K.S.: Symbolic
side-channel analysis for probabilistic programs. In: CSF (2018)

Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation
system. In: USENIX Security (2004)

Mantel, H., Schickel, J., Weber, A., Weber, F.: How secure is green it? the case of
software-based energy side channels. In: ESORICS (2018)

Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: ESORICS
(2015)

Mantel, H., Weber, A., Kopf, B.: A systematic study of cache side channels across
AES implementations. In: ESSoS (2017)

Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: CHES (2007)

Mercadier, D., Dagand, P.: Usuba: High-throughput and constant-time ciphers, by
construction. In: PLDI. pp. 157-173 (2019)

Moller, N.: Nettle (Version 3.5). https://ftp.gnu.org/gnu/nettle/nettle-3.5,
tar.gz (2019)

Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In:
ICISC (2006)

19

https://github.com/libtom/libtomcrypt/releases/tag/v1.18.2
https://github.com/libtom/libtomcrypt/releases/tag/v1.18.2
https://ftp.gnu.org/gnu/nettle/nettle-3.5.tar.gz
https://ftp.gnu.org/gnu/nettle/nettle-3.5.tar.gz

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Nane, R., Sima, V.M., Pilato, C., Choi, J., Fort, B., Canis, A., Chen, Y.T., Hsiao,
H., Brown, S.D., Ferrandi, F., Anderson, J.H., Bertels, K.: A survey and evaluation
of FPGA high-level synthesis tools. IEEE Trans. on CAD of Integrated Circuits
and Systems 35(10) (2016)

National Institute of Standards and Technology: FIPS PUB 46-3: Data encryption
standard (DES) (1999)

National Institute of Standards and Technology: FIPS PUB 197: Advanced encryp-
tion standard (AES) (2001)

National Institute of Standards and Technology: Update to current
use and deprecation of TDEA. https://csrc.nist.gov/News/2017/
Update-to-Current-Use-and-Deprecation-of-TDEA (2017)

OpenSSL Software Foundation: OpenSSL (Version 1.0.1d). https://www.openssl,
org/source/openssl-1.0.1d.tar.gz (2020)

OpenVPN Inc: OpenVPN. https://openvpn.net/| (2020)

Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case
of AES. In: CT-RSA (2006)

Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. ePrint
2002/169 (2002)

Poddar, R., Datta, A., Rebeiro, C.: A cache trace attack on Camellia. In: InfoS-
ecHiComNet (2011)

Smith, G.: On the foundations of quantitative information flow. In: FoSSaCS (2009)
Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tiny-
garble: Highly compressed and scalable sequential garbled circuits. In: S&P (2015)
Synopsis: DC Ultra. https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html| (2020)

Testa, E., Soeken, M., Amaru, L.G., Micheli, G.D.: Reducing the multiplicative
complexity in logic networks for cryptography and security applications. In: DAC
(2019)

Testa, E., Soeken, M., Riener, H., Amaru, L., Micheli, G.D.: A logic synthesis
toolbox for reducing the multiplicative complexity in logic networks. In: DATE
(2020)

The cURL Team: cURL. https://curl.haxx.se/ (2020)

Tillich, S., Smart, N.: (Bristol Format) Circuits of basic functions suitable for MPC
and FHE. https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
(2020)

Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: CHES (2003)

Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: Cached: Identifying cache-based
timing channels in production software. In: USENIX Security (2017)

Weiser, S., Spreitzer, R., Bodner, L.: Single trace attack against RSA key generation
in intel SGX SSL. In: ASTACCS (2018)

Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., Sigl, G.: DATA -
differential address trace analysis: Finding address-based side-channels in binaries.
In: USENIX Security (2018)

Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

Zahur, S., Evans, D.: Obliv-C: A language for extensible data-oblivious computation.
ePrint 2015/1153 (2015)

Zhao, X., Wang, T., Zheng, Y.: Cache timing attacks on Camellia block cipher.
ePrint 2009/354 (2009)

20

https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://www.openssl.org/source/openssl-1.0.1d.tar.gz
https://www.openssl.org/source/openssl-1.0.1d.tar.gz
https://openvpn.net/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://curl.haxx.se/
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

	RiCaSi: Rigorous Cache Side Channel Mitigationvia Selective Circuit Compilation

